بررسی جنس جعبه و تعداد ردیف میوه بر خواص مکانیکی میوه شلیل در پاسخ به ارتعاشات شبیه سازی شده حمل و نقل

نویسندگان
1 دانشجوی کارشناسی ارشد گروه مهندسی مکانیک بیوسیستم ، دانشگاه شهرکرد
2 دانشیار و عضو هیات علمی گروه مهندسی مکانیک بیوسیستم دانشگاه شهرکرد
3 استادیار و عضو هیات علمی گروه مهندسی مکانیک بیوسیستم دانشگاه اراک
چکیده
ارتعاشات وارد بر میوه‌های در حال حمل می‌تواند هر یک از آسیب‌های ضربه، سایش و فشرده ‌سازی و یا ترکیبی از آنها را به میوه وارد سازد. بافت میوه‌ شلیل در مرحله رسیدگی نرم است بنابراین سبب افزایش حساسیت به آسیب مکانیکی در هنگام حمل و نقل و نگهداری می‌شود. در این پژوهش اثر ارتعاشات شبیه سازی شده حمل و نقل بر کیفیت میوه شلیل با پنج سطح ، سه سطح دامنه، دو نوع جعبه ، سه نوع جاذب بر روی ردیف‌های اول ، دوم و سوم میوه مورد مطالعه قرار گرفته است. ریشه میانگین مربعات شتاب ارتعاش به عنوان معیاری از بزرگی ارتعاش در نظر گرفته شد و درصد انتقال پذیری ارتعاش در تیمارهای مختلف محاسبه شد. همچنین بیشینه تنش و مدول الاستیسیته در نقطه تسلیم نیز محاسبه گردید. نتایج نشان داد که جاذب‌ها در محدوده بسامدی 7/5 تا 5/7 و 9/8 هرتز به ترتیب، هرتز بیشترین و کمترین جذب ارتعاش را داشتند. میو‌ه‌های ردیف اول، دوم و سوم به ترتیب در شتاب‌های 8/0 ، 4/8 و 6 متر بر مجذور ثانیه کمترین مقدار انتقال پذیری بیشترین میزان جذب ارتعاش داشتند. کمترین میزان جذب ارتعاش نیز در ردیف اول ، دوم و سوم به ترتیب در شتاب‌های 3/2 ، 1/5 و 4/3 متر بر مجذور ثانیه بدست آمد. لذا پیشنهاد می‌شود برای حمل میوه از جعبه‌های کارتنی که درون آن‌ها جاذب‌های کاغذی قرار داده شده است، استفاده گردد و در هر جعبه، یک ردیف میوه بیشتر چیده نشود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the box type and the number of fruit rows on mechanical properties of nectarine in response to simulated transport vibrations

نویسندگان English

mehnoosh Talebpoor 1
Ali Maleki 2
majid lashgari 3
1 M.Sc. student of Mechanical Engineering of Biosystems Department, Shahrekord University, Iran
2 Associate professor of Mechanical Engineering of Biosystems Department, Shahrekord University, Iran
3 Assistant professor of Mechanical Engineering of Biosystems Department, Arak University, Iran
چکیده English

Vibrations on imported fruits can cause one of the damage such as impact, wear and compression or a combination of them to the fruit. The nectarine fruit tissue is soft at the soft handling stage, which increases the susceptibility to mechanical damage during transportation and storage. In this study, the effects of simulated transport vibrations on the quality of nectarine fruit with five levels of frequency, three levels of displacement, two types of boxes, three types of adsorbent on the first, second and third rows of fruit have been studied. The root mean square vibration acceleration was considered as a measure of the vibration magnitude and the vibration transferability percentage was calculated in different treatments. In addition, the maximum stress and modulus of elasticity at the yield point were calculated. Results showed the absorbers had the highest and lowest vibration absorption in the frequency range of 5.7 to 7.5 and 8.9 Hz, respectively. The first, second and third rows of fruits had the lowest transmitted and the highest vibration absorption at accelerations of 0.8, 8.4 and 6 ms-2, respectively. The lowest vibration absorption was obtained in the first, second and third rows at accelerations of 2.3, 5.1 and 3.4 ms-2. Therefore, it is recommended to use cardboard boxes with paper absorbers inside to carry the fruit and do not place more than one row of fruit in each box.

کلیدواژه‌ها English

Road transport
Vibration frequency
Modulus of elasticity
transmissibility
vibration absorber
Absorber
[1] Anonymous. 2015. Agriculture Database of FAO-STAT, Available on the http://FAOSTAT.FAO.ORG.
[2] Elik, A., Yanik, D.K., Istanbullu, Y., Guzelsoy, N.A., Yavuz, A. and Gogus, F., 2019. Strategies to reduce post-harvest losses for fruits and vegetables. International Journal of Scientific and Technological Research, 5(3),.29-39.
[3] Eissa, H., Gamaa, G. R, Gomaa, F. R. and Azam, M.M. 2012. Comparison of package cushioning materials to protect vibration damage to golden delicious apples. International Journal Latest Trends Agriculture Food Science, 2: 36–57.
[4] Opara, L.U. 2007. Bruise susceptibilities of Gala apples as affected by orchard management practices and harvest date. Postharvest Biology and Technology,43: 47– 54.
[5] Tavakoli, T. 2008. Agricultural machinery mechanics. Zanjan University Press. [in Persian]
[6] Reiesi. 2014. Study of the effect of vibrations caused by road transport on tomatoes., First National Agricultural Conference, Environment and food security. [in Persian]
[7] Taghizadeh Moghaddam, Gh., Hashemi, C., Tabatabaei Clvar, R. and Shahbazi, F. 2012. Investigation the effects of size and stack height of fruit on damage to kiwifruits in simulated vibrations of road transport. Seventh National Congress on Agricultural Machinery and Mechanization, Shiraz university, September, 14–16. [in Persian]
[8] Shahbazi, F., Rajabipour, A., Mohtasebi, S. and Rafie, S. 2010. Simulated in-transit vibration damage to watermelons. Agriculture Science, 12: 23–34.
[9] Zhou, R.Su.Sh., Yan, L. and Li Y.2007. Effect of transport vibration levels on mechanical damage and physiological responses of huanghua pears. Postharvest Biology and Technology, 20-28.
[10] Lu, F., Ishikawa, Y., Kitazawa, H. and Satake, T. 2010. Effect of sampling parameters on shock and vibration levels in truck transport. Proceedings of the 17th IAPRI World Conference on Packaging,129-135.
[11] Jarimopas, S., Singh, S. and Saengnil, W. 2005. Measurement and analysis of truck transport vibration levels and damage to packaged tangerines during transit. Packaging Technology and Science, 18:179–188.
[12] Garcia-Romeu-Martinez, M., Singh, S.P. and Cloquell-Ballester, V.A. 2007. Measurement and analysis of vibration levels for truck transport in spain as a function of payload, suspension and speed. Packaging Technology and Science,21: 439–451.
[13] Singh, S.P., Singh, E. and Joneson., 2006. Measurement and analysis of US truck vibration for leaf spring and air ride suspensions, and development of tests to simulate these conditions. Packaging Technology and Science, 19(6): 309–323.
[14] Mansori alam, A. and Ahmadi, E. 2017. Investigating and determining road damage to contusion tomato. Agricultural Machinery,1. [in Persian]
[15] Van Zeebroeck, M., Tijsken, E., Dintwa, E., Kafashan, J., Loodts, J., De Baerdemaeker, J. and Ramon, H. 2006. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Case study of vibration damage during apple bulk transport. Postharvest Biology Technology, 41(1): 92-100.
[16] Nicolai, B.M. and Tijsknes, E .2007. Impact damage of apples during transport and handling. Postharvest Biology Technology, 45: 157-167.
[17] Ranathunga, C.L., Jayaweera, H.H.E., Suraweera, S.K.K., Wattage, S.C., Ruvinda, K.K.D and Ariyaratne T.R. 2010. Vibration effects in vehicular road transportation. Institute of Physics – Sri Lanka Proceedings of the Technical Sessions, 26: 9-16.
[18] Acıcan, T., Alibaş, K. and Özelkök, I.S. 2007. Mechanical damage to apples during transport in wooden crates. Bio system Engineering,96: 239–248.
[19] Idah, P., Yisa, M. and Chukwu, O. 2012. Morenikeji simulated transport damage study on fresh tomato (lycopersicon esculentum) fruits. Agriculture Engineering Int: CIGR Journal, 14: 119–126.
[20] Sharaieyi, P. 2011. Effect of harvesting time and packaging method on quality and control of fungal infection of peach. Agricultural Engineering Research Institute,67. [in Persian]
[21] Shahbazi, F.2017. The effect of simulated vibration of transport on weight loss of apricot fruits. Agricultural Engineering (Journal of Agricultural Science), 40(1):58-70. [in Persian]
[22] Fischer, D., Craig, W. and Ashby, B.H. 1990. Reducing transportation damage to grapes and strawberries. Journal of Food Distribution Research, 21:193-202.
[23] Beheshti, B. and Sekhavati, S. 2013. Investigation of the effect of acceleration and frequency of vibration caused by transportation on the physical properties of nectarine fruit. second national conference on modern issues in agriculture, Saveh, Islamic Azad University, Saveh Branch. https://www.civilica.com/Paper-NCNCA02-NCNCA02_072.html
[24] Berardinelli, V., Donati, A., Giunchi, A., Guarnieri, L. and Ragni. 2005. Damage to pears caused by simulated transport. Journal of Food Engineering, 66 :219–226.
[25] Loghavi, M. and Mohseni, SH. 2006. The effect of frequency and amplitude of vibration on the separation of linseed fruit. Iran Agricultural Research,1-27. [in Persian]
[26] Armstrong, P.R., Stone, M.L. and Brusewiz, G.H. 1977. Nondestructive acoustic and compressive measurements of watermelon for internal damage detection. Apple Engineering Agricultural, 13(5): 641-645.
[27] Ogut, H., Peker, A. and Aydin, C. 1999. Simulated transit studies on peaches, effects of container cushion materials & vibration on elasticity modulus. Agricultural Mechanization in Asia, Africa & Latin America, 30: 59-62.
[28] Babarinsa, F.A. and Lge, T. 2012. Young's modulus for packaged Roma tomatoes under compressive loading. International Journal of Scientific & Engineering Research, 3: 1-7.