شبیه سازی چروکیدگی و انتقال رطوبت و حرارت در خشک کردن چغندر لبویی

نویسندگان
1 گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد آیت‌الله آملی، آمل، ایران
2 گروه مهندسی، دانشگاه تخصصی فناوریهای نوین آمل، آمل، ایران
3 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آیت ا… آملی ، آمل، ایران
4 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آیت ا… آملی، آمل، ایران
چکیده
خشک‌کردن، یک روش مهم نگهداری مواد مرطوب است و برای طیف گسترده‌ای از محصولات صنعتی و کشاورزی قابل استفاده است. با توجه به فعالیت آبی کم، در فرآورده‌های خشک‌شده نرخ فساد محدود است و به دلیل کاهش حجم به‌راحتی قابل حمل‌ونقل و نگهداری هستند و نیازی به نگهداری در سردخانه ندارند درنتیجه در این فرآورده‌ها هزینه مصرف انرژی پایین است. هدف از مطالعه حاضر توسعه یک مدل برای توصیف انتقال جرم و حرارت طی خشک‌کردن تکه‌های چغندر لبویی بود. دما، رطوبت و چروکیدگی یک قطعه چغندر لبویی استوانه‌ای شکل طی خشک‌کردن در سه دمای مختلف هوا (50، 60 و 70 درجه سانتی‌گراد) شبیه‌سازی شدند. معادلات انتشار رطوبت و حرارت همزمان با شرایط مرزی همرفتی با استفاده از یک‌زبان شبیه‌سازی (MATLAB) بر اساس روش تفاضل محدود حل شدند. چروکیدگی، ویژگی‌های حرارتی و نفوذ رطوبت متغیر در شبیه‌سازی مدنظر قرار گرفتند. نتایج شبیه‌سازی به شکل رضایت بخشی با درجه حرارت و رطوبت اندازه‌گیری شده از چغندر لبویی طی خشک شدن توافق داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Heat and moisture transfer and shrinkage simulation of beetroot (Beta vulgaris) drying

نویسندگان English

Danial Maghsoudlou Kamali 1
Ghadir Esmaeili 2
Seyed-Ahmad Shahidi 3
Donya Maghsoudlou Kamali 4
1 Department of Mechanics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran Amol, Iran
2 Faculty of Engineering, Amol University of Special Modern Technologies
3 Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch
4 Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch
چکیده English

Drying is an important method of preservation of wet materials and is applicable to a wide range of industrial and agricultural products. Dried products have limited deterioration rates, due to the low water activity, are easily transported and stored because of the reduced volume, and have no need of refrigeration, representing energy economy. The purpose of the present study was to develop a model to describe the heat and mass transfer during the drying of beetroot. Temperature, moisture content, and shrinkage of a beetroot disc were simulated during drying at three different air temperatures (50, 60, and 70 °C). Simultaneous heat and moisture diffusion equations were solved along with convective boundary conditions, using a simulation language, MATLAB, based on finite difference technique. Shrinkage, variable thermal properties and moisture diffusivity were considered in the simulation. The simulated results matched satisfactorily with measured temperature and moisture content of the beetroot during drying.

کلیدواژه‌ها English

Beetroot
Finite Difference
Heat Transfer
mass transfer
Shrinkage
[1] Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in food science & technology, 15(1), 19-38.
[2] Kaur, C., & Kapoor, H. C. (2002). Anti‐oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 37(2), 153-161.
[3] Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical reviews in food science and nutrition, 40(3), 173-289.
[4] Tzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E., & Margaris, D. P. (2015). Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. Journal of Food Engineering, 156, 10-21.
[5] Hamzeh, S., Motamedzadegan, A., Shahidi, S. A., Ahmadi, M., & Regenstein, J. M. (2019). Effects of drying condition on physico-chemical properties of foam-mat dried shrimp powder. Journal of Aquatic Food Product Technology, 28(7), 794-805.
[6] Velić, D., Planinić, M., Tomas, S., & Bilić, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97-102.
[7] Roshani, S., Shahidi, S. A., Ghorbani-HasanSaraei, A., & Raeisi, S. N. (2020). Phytochemical content, physicochemical and microstructural properties of apple powder as affected by drying method. Latin American Applied Research-An international journal, 51(1), 27-35.
[8] Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of food engineering, 73(3), 281-289.
[9] Seiiedlou, S., Ghasemzadeh, H. R., Hamdami, N., Talati, F., & Moghaddam, M. (2010). Convective drying of apple: Mathematical modeling and determination of some quality parameters. International journal of agriculture and biology, 12(2), 171-178.
[10] Zlatanović, I., Komatina, M., & Antonijević, D. (2013). Low-temperature convective drying of apple cubes. Applied Thermal Engineering, 53(1), 114-123.
[11] Babalis, S. J., & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of food Engineering, 65(3), 449-458.
[12] Pasban, A., Mohebbi, M., Sadrnia, H., & Shahidi, S. A. (2019). Numerical Solution of Mass Transfer Process during Drying of Apple Slices Using Pseudospectral Method. Journal of Agricultural Machinery, 9(1), 113-122.
[13] Margaris, D. P., & Ghiaus, A. G. (2007). Experimental study of hot air dehydration of Sultana grapes. Journal of Food Engineering, 79(4), 1115-1121.
[14] Doymaz, I. (2009). An experimental study on drying of green apples. Drying technology, 27(3), 478-485.
[15] Shahidi, S. A., Ghorbani-HasanSaraei, A., Mohebbi, M., & Motamedzadegan, A. (2016). Kinetics of Reshteh Khoshkar Color Changes During Atmospheric and Vacuum Deep-fat Frying. International Journal of Engineering, 29(12), 1670-1676.
[16] Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical reviews in food science and nutrition, 50(5), 441-464.
[17] Wang, N., & Brennan, J. G. (1995). A mathematical model of simultaneous heat and moisture transfer during drying of potato. Journal of Food Engineering, 24(1), 47-60.
[18] Shahidi, S. A., Mohebbi, M., Motamedzadegan, A., Ziaiifar, A. M., Abolfazli, E. J., & Mortazavi, S. A. (2013). Evaluation of atmospheric and vacuum frying on properties of deep fat fried reshte-khoshkar. Journal of Research and Innovation in Food Science and Technology, 2(2), 179-192.
[19] Aregawi, W., Defraeye, T., Saneinejad, S., Vontobel, P., Lehmann, E., Carmeliet, J., ... & Nicolai, B. (2014). Understanding forced convective drying of apple tissue: Combining neutron radiography and numerical modelling. Innovative food science & emerging technologies, 24, 97-105.
[20] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. Journal of food processing and preservation, 40(5), 815-827.
[21] Hamzeh, S., Motamedzadegan, A., Shahidi, S.A., Ahmadi, M. and Regenstein, J. (2019). Experimental study on foam mat drying of shrimp meat and evaluation of thin-layer drying models. Food Science and Technology, 16(92), 73-87.
[22] Datta, A. K. (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of food engineering, 80(1), 80-95.
[23] Zhang, J., & Datta, A. K. (2004). Some considerations in modeling of moisture transport in heating of hygroscopic materials. Drying Technology, 22(8), 1983-2008.
[24] Pasban, A., Sadrnia, H., Mohebbi, M., & Shahidi, S. A. (2017). Spectral method for simulating 3D heat and mass transfer during drying of apple slices. Journal of Food Engineering, 212, 201-212.
[25] Defraeye, T. (2014). Advanced computational modelling for drying processes–A review. Applied Energy, 131, 323-344.
[26] De Bonis, M. V., & Ruocco, G. (2008). A generalized conjugate model for forced convection drying based on an evaporative kinetics. Journal of Food Engineering, 89(2), 232-240.
[27] Curcio, S., Aversa, M., Calabrò, V., & Iorio, G. (2008). Simulation of food drying: FEM analysis and experimental validation. Journal of Food Engineering, 87(4), 541-553.
[28] Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2009). Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numerical Heat Transfer, Part A: Applications, 56(5), 379-405.
[29] Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2010). Finite-volume modelling of heat and mass transfer during convective drying of porous bodies–Non-conjugate and conjugate formulations involving the aerodynamic effects. Renewable Energy, 35(7), 1391-1402.
[30] Marra, F., De Bonis, M. V., & Ruocco, G. (2010). Combined microwaves and convection heating: a conjugate approach. Journal of Food Engineering, 97(1), 31-39.
[31] Curcio, S. (2010). A multiphase model to analyze transport phenomena in food drying processes. Drying Technology, 28(6), 773-785.
[32] Halder, A., & Datta, A. K. (2012). Surface heat and mass transfer coefficients for multiphase porous media transport models with rapid evaporation. Food and Bioproducts Processing, 90(3), 475-490.
[33] Sabarez, H. T. (2012). Computational modelling of the transport phenomena occurring during convective drying of prunes. Journal of food engineering, 111(2), 279-288.
[34] Kurnia, J. C., Sasmito, A. P., Tong, W., & Mujumdar, A. S. (2013). Energy-efficient thermal drying using impinging-jets with time-varying heat input–a computational study. Journal of food engineering, 114(2), 269-277.
[35] Yadollahinia, A., Latifi, A., & Mahdavi, R. (2009). New method for determination of potato slice shrinkage during drying. Computers and electronics in agriculture, 65(2), 268-274.
[36] Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of food engineering, 84(3), 430-440.
[37] Moreira, R., Castell-Perez, M. E., & Barrufet, M. A. (2004). Deep fat frying. Maryland: Aspen Publishers, Inc.
[38] Moyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: effect of solute impregnation. Drying Technology, 20(7), 1303-1318.
[39] Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT-Food Science and Technology, 42(6), 1164-1173.
[40] Farinu, A., & Baik, O. D. (2007). Heat transfer coefficients during deep fat frying of sweetpotato: effects of product size and oil temperature. Food Research International, 40(8), 989-994.
[41] Farinu, A., & Baik, O. D. (2008). Convective mass transfer coefficients in finite element simulations of deep fat frying of sweetpotato. Journal of food engineering, 89(2), 187-194.
[42] Adedeji, A. A., Ngadi, M. O., & Raghavan, G. S. V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of food Engineering, 91(1), 146-153.
[43] Rahman, M. S. (Ed.). (2009). Food properties handbook. CRC press.
[44] Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1994). Shrinkage, density and porosity of garlic during drying. Journal of Food Engineering, 23(3), 309-319.