[1] Stintzing, F. C., & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends in food science & technology, 15(1), 19-38.
[2] Kaur, C., & Kapoor, H. C. (2002). Anti‐oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science & Technology, 37(2), 153-161.
[3] Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical reviews in food science and nutrition, 40(3), 173-289.
[4] Tzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E., & Margaris, D. P. (2015). Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. Journal of Food Engineering, 156, 10-21.
[5] Hamzeh, S., Motamedzadegan, A., Shahidi, S. A., Ahmadi, M., & Regenstein, J. M. (2019). Effects of drying condition on physico-chemical properties of foam-mat dried shrimp powder. Journal of Aquatic Food Product Technology, 28(7), 794-805.
[6] Velić, D., Planinić, M., Tomas, S., & Bilić, M. (2004). Influence of airflow velocity on kinetics of convection apple drying. Journal of Food Engineering, 64(1), 97-102.
[7] Roshani, S., Shahidi, S. A., Ghorbani-HasanSaraei, A., & Raeisi, S. N. (2020). Phytochemical content, physicochemical and microstructural properties of apple powder as affected by drying method. Latin American Applied Research-An international journal, 51(1), 27-35.
[8] Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of food engineering, 73(3), 281-289.
[9] Seiiedlou, S., Ghasemzadeh, H. R., Hamdami, N., Talati, F., & Moghaddam, M. (2010). Convective drying of apple: Mathematical modeling and determination of some quality parameters. International journal of agriculture and biology, 12(2), 171-178.
[10] Zlatanović, I., Komatina, M., & Antonijević, D. (2013). Low-temperature convective drying of apple cubes. Applied Thermal Engineering, 53(1), 114-123.
[11] Babalis, S. J., & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of food Engineering, 65(3), 449-458.
[12] Pasban, A., Mohebbi, M., Sadrnia, H., & Shahidi, S. A. (2019). Numerical Solution of Mass Transfer Process during Drying of Apple Slices Using Pseudospectral Method. Journal of Agricultural Machinery, 9(1), 113-122.
[13] Margaris, D. P., & Ghiaus, A. G. (2007). Experimental study of hot air dehydration of Sultana grapes. Journal of Food Engineering, 79(4), 1115-1121.
[14] Doymaz, I. (2009). An experimental study on drying of green apples. Drying technology, 27(3), 478-485.
[15] Shahidi, S. A., Ghorbani-HasanSaraei, A., Mohebbi, M., & Motamedzadegan, A. (2016). Kinetics of Reshteh Khoshkar Color Changes During Atmospheric and Vacuum Deep-fat Frying. International Journal of Engineering, 29(12), 1670-1676.
[16] Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical reviews in food science and nutrition, 50(5), 441-464.
[17] Wang, N., & Brennan, J. G. (1995). A mathematical model of simultaneous heat and moisture transfer during drying of potato. Journal of Food Engineering, 24(1), 47-60.
[18] Shahidi, S. A., Mohebbi, M., Motamedzadegan, A., Ziaiifar, A. M., Abolfazli, E. J., & Mortazavi, S. A. (2013). Evaluation of atmospheric and vacuum frying on properties of deep fat fried reshte-khoshkar. Journal of Research and Innovation in Food Science and Technology, 2(2), 179-192.
[19] Aregawi, W., Defraeye, T., Saneinejad, S., Vontobel, P., Lehmann, E., Carmeliet, J., ... & Nicolai, B. (2014). Understanding forced convective drying of apple tissue: Combining neutron radiography and numerical modelling. Innovative food science & emerging technologies, 24, 97-105.
[20] Bahmani, A., Jafari, S. M., Shahidi, S. A., & Dehnad, D. (2016). Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. Journal of food processing and preservation, 40(5), 815-827.
[21] Hamzeh, S., Motamedzadegan, A., Shahidi, S.A., Ahmadi, M. and Regenstein, J. (2019). Experimental study on foam mat drying of shrimp meat and evaluation of thin-layer drying models. Food Science and Technology, 16(92), 73-87.
[22] Datta, A. K. (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of food engineering, 80(1), 80-95.
[23] Zhang, J., & Datta, A. K. (2004). Some considerations in modeling of moisture transport in heating of hygroscopic materials. Drying Technology, 22(8), 1983-2008.
[24] Pasban, A., Sadrnia, H., Mohebbi, M., & Shahidi, S. A. (2017). Spectral method for simulating 3D heat and mass transfer during drying of apple slices. Journal of Food Engineering, 212, 201-212.
[25] Defraeye, T. (2014). Advanced computational modelling for drying processes–A review. Applied Energy, 131, 323-344.
[26] De Bonis, M. V., & Ruocco, G. (2008). A generalized conjugate model for forced convection drying based on an evaporative kinetics. Journal of Food Engineering, 89(2), 232-240.
[27] Curcio, S., Aversa, M., Calabrò, V., & Iorio, G. (2008). Simulation of food drying: FEM analysis and experimental validation. Journal of Food Engineering, 87(4), 541-553.
[28] Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2009). Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numerical Heat Transfer, Part A: Applications, 56(5), 379-405.
[29] Lamnatou, C., Papanicolaou, E., Belessiotis, V., & Kyriakis, N. (2010). Finite-volume modelling of heat and mass transfer during convective drying of porous bodies–Non-conjugate and conjugate formulations involving the aerodynamic effects. Renewable Energy, 35(7), 1391-1402.
[30] Marra, F., De Bonis, M. V., & Ruocco, G. (2010). Combined microwaves and convection heating: a conjugate approach. Journal of Food Engineering, 97(1), 31-39.
[31] Curcio, S. (2010). A multiphase model to analyze transport phenomena in food drying processes. Drying Technology, 28(6), 773-785.
[32] Halder, A., & Datta, A. K. (2012). Surface heat and mass transfer coefficients for multiphase porous media transport models with rapid evaporation. Food and Bioproducts Processing, 90(3), 475-490.
[33] Sabarez, H. T. (2012). Computational modelling of the transport phenomena occurring during convective drying of prunes. Journal of food engineering, 111(2), 279-288.
[34] Kurnia, J. C., Sasmito, A. P., Tong, W., & Mujumdar, A. S. (2013). Energy-efficient thermal drying using impinging-jets with time-varying heat input–a computational study. Journal of food engineering, 114(2), 269-277.
[35] Yadollahinia, A., Latifi, A., & Mahdavi, R. (2009). New method for determination of potato slice shrinkage during drying. Computers and electronics in agriculture, 65(2), 268-274.
[36] Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of food engineering, 84(3), 430-440.
[37] Moreira, R., Castell-Perez, M. E., & Barrufet, M. A. (2004). Deep fat frying. Maryland: Aspen Publishers, Inc.
[38] Moyano, P. C., & Berna, A. Z. (2002). Modeling water loss during frying of potato strips: effect of solute impregnation. Drying Technology, 20(7), 1303-1318.
[39] Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT-Food Science and Technology, 42(6), 1164-1173.
[40] Farinu, A., & Baik, O. D. (2007). Heat transfer coefficients during deep fat frying of sweetpotato: effects of product size and oil temperature. Food Research International, 40(8), 989-994.
[41] Farinu, A., & Baik, O. D. (2008). Convective mass transfer coefficients in finite element simulations of deep fat frying of sweetpotato. Journal of food engineering, 89(2), 187-194.
[42] Adedeji, A. A., Ngadi, M. O., & Raghavan, G. S. V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of food Engineering, 91(1), 146-153.
[43] Rahman, M. S. (Ed.). (2009). Food properties handbook. CRC press.
[44] Madamba, P. S., Driscoll, R. H., & Buckle, K. A. (1994). Shrinkage, density and porosity of garlic during drying. Journal of Food Engineering, 23(3), 309-319.