غیر فعال سازی غیر حرارتی آنزیم پراکسیداز کدو سبز: مدل‌سازی سطح پاسخ تأثیر اسانس‌های زیره، رازیانه و میخک

نویسندگان
1 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.
2 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران.
چکیده
با افزایش آگاهی مصرف کنندگان به مضرات مواد شیمیایی و تأثیر فراوری حرارتی در کاهش ارزش تغذیه‌ای، تقاضای برای تولید و استفاده از مواد غذایی تازه و یا کمتر فرآوری شده افزایش یافته است. در این مطالعه توانایی اسانس­های زیره سبز، رازیانه و میخک (غلظت‌های 50، 75، 100، ppm 200 و فرم خالص( در غیر فعال سازی آنزیم پراکسیداز کدو سبز بررسی شد. نتایج نشان داد که تنها فرم خالص و غلظت ppm 200 اسانس زیره سبز و همچنین فرم خالص و غلظت‌های بالای (100 و ppm 200) اسانس رازیانه، توانایی کاهش فعالیت آنزیم پراکسیداز کدو سبز را دارا بودند اما استفاده از غلظت‌های 50 و ppm 75 اسانس رازیانه باعث افزایش فعالیت آنزیم پراکسیداز نیز شده بود. اسانس میخک در کلیه غلظت‌های مورد مطالعه موجب کاهش فعالیت آنزیم پراکسیداز شد که نشان دهنده توانایی اسانس میخک در واکنش با اکسیژن محیط و ممانعت از واکنش آنزیم پراکسیداز و پلی فنول اکسیداز (قهوه‌ای شدن آنزیمی) می‌باشد. بهترین شرایط برای غیر فعال سازی آنزیم پراکسیداز تحت تأثیر اسانس زیره شامل غلظت اسانس ppm5/194 و زمان فعالیت آنزیمی 02/0 ثانیه بود در حالیکه شرایط بهینه برای دست یابی به کم‌ترین فعالیت آنزیم پراکسیداز شامل استفاده از ppm200 اسانس رازیانه و زمان فعالیت آنزیمی صفر ثانیه، و ppm 200 اسانس میخک و زمان فعالیت آنزیمی 7/1 ثانیه می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Non-thermal inactivation of courgette peroxidase enzyme: Response surface modeling of the effect of cumin, fennel and clove essential oils

نویسندگان English

Narjes Aghajani 1
Amir Daraei Garmakhany 2
1 assistant professor of Bu- Ali Sina university
2 assistant professor of Bu-Ali Sina university
چکیده English

Increasing consumer awareness of the dangers of chemicals and the effect of heat treatment on the foods nutritional value, lead to increase of the demand for the production and use of fresh or minimaly processed foods. In this study, the ability of cumin, fennel and clove essential oils (concentrations of 50, 75, 100, 200 ppm and pure form) in non-thermal inactivation of courgette peroxidase enzyme were investigated. The results showed that only pure form and concentration of 200 ppm of cumin essential oil and also pure form and high concentrations (100 and 200 ppm) of fennel essential oil were able to reduce the peroxidase enzyme activity in courgette but using concentrations of 50 and 75 ppm of fennel essential oil leads to increase peroxidase enzyme activity. Clove essential oil in all studied concentrations reduced the peroxidase enzyme activity, which indicates the ability of clove essential oil to react with oxygen and inhibit the reaction of enzyme peroxidase and polyphenol oxidase (enzymatic browning reaction). The best conditions for inactivation of peroxidase enzyme under the influence of cumin essential oil included a concentration of 194.5 ppm essential oil and an enzymatic activity time of 0.02 seconds, while the optimal conditions for achieving the lowest peroxidase activity included using 200 ppm fennel essential oil and enzyme activity time of 0 second, and 200 ppm of clove essential oil and enzymatic activity time of 1.7 second.

کلیدواژه‌ها English

Courgette
Peroxidase enzyme inactivation
Cumin essential oil
Clove Essential Oil
Fennel essential oil
[1] Bugg, T.D.H., 2012. Enzymes Are Wonderful Catalysts. In Introduction to Enzyme and Coenzyme Chemistry. John Wiley & Sons, Ltd, pp. 26–49.
[2] Martinez, M.V., and Whitaker, J.R. 1995. The biochemistry and control of enzymatic browning. Trends in Food Science and Technology, 6 (6): 195-200.
[3] Lambrecht, H.S. 1995. Sulfite substitutes for the prevention of enzymatic browning in foods. In: Lee, C.Y., Whitaker, J.R. (Eds.), Enzymatic Browning and its Prevention. American Chemical Society, Washington DC, pp. 166–177.
[4] Silva, F.M., Sims, C., Balaban, M.O., Silva, C.L.M., and O’Keefe, S. 2000. Kinetics of flavour and aroma changes in thermally processed cupuaçu (Theobroma grandiflorum) pulp. Journal of the Science of Food and Agriculture, 80 (6): 783-787.
[5] Castro, S.M., Saraiva, J.A., Lopes-da-Silva, J.A., Delgadillo, I., Van Loey, A., Smout, C., and Hendrickx, M. 2008. Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chemistry, 107 (4): 1436-1449.
[6] Volden, J., Borge, G.I.A., Bengtsson, G.B., Hansen, M., Thygesen, I.E., and Wicklund, T. 2008. Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp capitata f. rubra). m 109 (3): 595-605.
[7] Puupponen-Pimia, R., Hakkinen, S.T., Aarni, M., Suortti, T., Lampi, A.M., Eurola, M., Piironen, V., Nuutila, A.M., and Oksman-Caldentey, K.M. 2003. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. Journal of the Science of Food and Agriculture, 83 (14): 1389-1402.
[8] Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., and Yoshimura, K. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53 (372): 1305-1319.
[9] Huang, R., Xia, R., Hu, L., Lu, Y., and Wang, M. 2007. Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Scientia Horticulturae, 113 (2): 166-172.
[10] Lopez, P., Sala, F.J., Fuente, J.L., Condon, S., Raso, J., and Burgos, J. 1994. Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42 (2): 252–256.
[11] Günes, B., and Bayındırlı, A. 1993. Peroxidase and Lipoxygenase Inactivation During Blanching of Green Beans, Green Peas and Carrots. LWT, 26 (5): 406-410.
[12] Tijskens, LMM., Rodis, PS, Hertog, MLATM., Waldron, KW., Ingham, L., Proxenia, N., and Dijk, C. 1997. Activity of peroxidase during blanching of peaches, carrots and potatoes. Journal of Food Engineering, 34 (4): 355-370.
[13] Busto, MD., Owusu Apenten, RK., Robinson, DS., Wu, Z., Casey, R., and Hughes, RK. 1999. Kinetics of thermal inactivation of pea seed lipoxygenases and the effect of additives on their thermostability. Food Chemistry, 65 (3): 323-329.
[14] Garrote, RL., Silva, ER., Bertone, RA., and Roa, RD. 2004. Predicting the end point of a blanching process. LWT, 37 (3): 309-315.
[15] Barret DM, Theerakulkait C. 1995. Quality indicators in blanched, frozen and stored vegetables. Food Technology, 49 (62): 64-65.
[16] Landl, A., Abadias, M., Sárraga, C., Viñas, I., and Picouet, P.A. 2010. Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Science and Emerging Technologies, 11 (4): 557–564.
[17] Akyol, Ç., Alpas, H., and Bayındırlı, A. 2006. Inactivation of peroxidase and lipoxygenase in carrots, green beans, and green peas by combination of high hydrostatic pressure and mild heat treatment. European Food Research and Technology, 224 (2): 171–176.
[18] Mohseni, M., Daraei Garmakhany, A., and Mohamadi Sani, A. 2018. Study of the effect of thyme essential oil on the reduction of peroxidase enzyme activity in black Spanish radish and green bean. Food Science and Technology, 15 (82): 63-71.
[19] Mohseni, M, Mohamadi Sani, and A, Daraei Garmakhani, A. 2015. An investigation on the effects of clove essence on deactivation of horseradish peroxidase. International journal of biology, pharmacy and allied science (IJBPAS), 4(7): 4891-4897.
[20] Shahabi Ghahfarrokhi, I., Daraei Garmakhany, A, Kashaninejad, M, and Dehghani, A. A. 2013. Estimation of Peroxidase Activity in red cabbage by Artificial Neural Network (ANN). ‎Quality Assurance and Safety of Crops and Foods, 5(2): 163-167.
[21] Daraei Garmakhany A, Aghajani N, Gohari Ardabili A. 2017. Optimization of Non-thermal Inactivation of Celery’s Peroxidase Enzyme by the Use of Response Surface Methodology. Iranian Journal of Nutrition Sciences & Food Technology, 12 (1): 99-108. (in Persian).
[22] Ponec, AG, Del Valle, CE, and Roura, SI. 2004. Natural essential oil as reducing agents of perroxidase activity in leafy vegetable. LWT, 37 (2): 199-204.
[23] Hemeda, HM, and Klein, BP. 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55 (1): 184-186.
[24] Kashaninejad, M, and Daraei Garmakhany, A. 2013. Application of essential oils as natural antioxidant in reduction of peroxidase enzyme activity. Reported research at Gorgan University of Agricultural Science and Natural Resources, (in Persian).
[25] Nikos Gand Tzortzakis, A. 2007. Maintaining postharvest quality of fresh produce with volatile compounds. Innovative Food Science and Emerging Technologies, 8: 11-116.
[26] Daraei Garmakhany, A, Mirzai, HO, Aghajani, N, and kashiri, M. 2010. Investigation of natural essential oil antioxidant activity on peroxidase enzyme in selected vegetable. Journal of Agricultural Science and Technology, 4 (3): 78-84.