بررسی جایگزینی شکر و چربی با عصاره‌ی مالت و اینولین در تولید سیروپ رژیمی به کار رفته در بستنی پروبیوتیک

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران
چکیده
فرآورده‌های لبنی به‌عنوان یک حامل ترکیبات فراسودمند می‌تواند نخستین گزینه در جهت غنی‌سازی به شمار آید. بر همین اساس در پژوهش حاضر نیز فرآورده‌ای فراسودمند دارای عصاره­ی مالت (5، 10 و 15 درصد جایگزینی) و اینولین (5/0، 1 و 2 درصد) از بستنی با استفاده از باکتری لاکتوباسیلوس کازئی تولید شد و آزمون‌های میکروبی، فیزیکوشیمیایی، ویژگی­های بافتی و حسی تیمارها در بازه­ی زمانی 28 روزه انجام شد. نتایج ارزیابی‌ها نشان داد که نگهداری تیمارها تا 28 روز در دمای °C 4، موجب کاهش معنی­دار در فعالیت میکروارگانیسم­های پروبیوتیک شد (05/0 p). همچنین ویژگی­های فیزیکوشیمیایی نیز در مدت زمان نگهداری، دستخوش تغییر شد. به­گونه­ای که مقادیر pH در تمامی تیمارها به صورت معنی­دار کاهش پیدا کرد، حال آنکه اسیدیته در تمامی تیمارها افزایش پیدا کرد (05/0 p). بررسی پارامترهای رنگ­سنجی تیمارهای بستنی نیز نشان داد، افزایش میزان عصاره­ی مالت و اینولین موجب تغییر معنی­دار در پارامترهای رنگی شد (05/0 p). ویژگی­های عملکردی بستنی همانند مقاومت به ذوب و افزایش حجم با افزایش اینولین روند افزایشی از خود نشان داد، حال­ آن­که افزایش غلظت عصاره­ی مالت به 15 درصد اثر منفی روی افزایش حجم نشان داد (05/0 p). ویژگی­های بافتی فرآورده نیز متاثر از افزودن این دو ترکیب بوده و این امر عمدتا موجب افزایش سختی و چسبندگی در تیمارها شد، با این حال در غلظت 15 درصد عصاره­ی مالت، پارامترهای بافتی عمدتا تضعیف شدند و این موارد در ارزیابی حسی نمود پیدا کرد و سبب شد درنهایت ارزیابان تیمار D (تیمار دارای 5% عصاره مالت-1% اینولین) را به عنوان تیمار بهینه برای غنی‌سازی نمونه‌های بستنی پروبیوتیک در نظر گرفت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of sugar and fat substitution with malt extract and inulin in order to prepare dietary syrup used for probiotic ice cream

نویسندگان English

Elnaz Janghorban
Mohammad Goli
Department of Food Science & Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Utilization of dairy products assumed to be the first option for the phrmaceutical purposes. Hence, in this project, we have been following to produce a functional product, which is fortified with malt extract (5%, 10% and 15%), and inulin (0.5%, 1% and 2%) and containing Lactobacillus casei. Microbial survival, physicochemical, textural and sensorial properties investigated during 28 days. The results showed that storage of treatments for up to 28 days at 4 °C significantly reduced the activity of probiotic microorganisms (p≤0.05). Physicochemical properties of ice cream, showed an alteration, so that pH of treatments decreased significantly while acidity increased (p≤0.05). Color parameters induced as malt extract and inulin increased (p≤0.05). Functional properties including melting stability and over run also improved dramatically, however, in treatments with 15 percent of malt extract a reverse trend observed (p≤0.05). Increase in inulin and malt extract revealed with an upward trend in hardness and adhesiveness of treatments. In addition treatments with 15 percent of malt extract weakened the textural properties, Eventually end up in sensorial evaluation of treatments led to selection of sample D (treatment with 5 percent malt extract, 1 percent inulin), which is recommended for probiotic ice cream fortification.

کلیدواژه‌ها English

Dietary syrup
Malt Extract
Inulin
Probiotic ice cream
Physico-chemical properties
Sensory properties
[1] Tamime, A. Y., & Thomas, L. (Eds.). (2017). Probiotic dairy products. John Wiley & Sons.
[2] Aboulfazli, F., Shori, A. B., & Baba, A. S. (2016). Effects of the replacement of cow milk with vegetable milk on probiotics and nutritional profile of fermented ice cream. LWT, 70, 261-270.
[3] Walery, Z. (2017). Grape polyphenols concentrate demonstrates cardioprotection in terms of hypoxic myocardial injury. Russian Open Medical Journal, 6(4).
[4] Tavasol S, & Tabari, M. (2014). Evaluation of the effect of dietary fiber (apple and celery) on physicochemical and rheological properties of low-fat ice cream. 3th National Conference on Food Science and Industry, Islamic Azad University of Quchan, Quchan, 17 -18 November.
[5] Frei, R., Akdis, M., & O’Mahony, L. (2015). Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Current opinion in gastroenterology, 31(2), 153-158.
[6] Scaldaferri, F., Gerardi, V., Lopetuso, L. R., Del Zompo, F., Mangiola, F., Boškoski, I., & Gaetani, E. (2013). Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. BioMed research international, 2013.
[7] Glibowski, P., & Kowalska, A. (2012). Rheological, texture and sensory properties of kefir with high performance and native inulin. Journal of Food Engineering, 111(2), 299-304.
[8] Kramer, P., 2006. Barley, malt and malting. In: Ockert, K. (Ed), Row Materials and Brewhouse Operation, Vol. 1. The Master Brewers Association of the Americans, st. Paul. Minnesota, p. 15-54.
[9] Gonzalez, N. J., Adhikari, K., & Sancho-Madriz, M. F. (2011). Sensory characteristics of peach-flavored yogurt drinks containing prebiotics and synbiotics. LWT-Food Science and Technology, 44(1), 158-163.
[10] Balthazar, C. F., Silva, H. A., Vieira, A. H., Neto, R. P. C., Cappato, L. P., Coimbra, P. T., & Freitas, M. Q. (2017). Assessing the effects of different prebiotic dietary oligosaccharides in sheep milk ice cream. Food Research International, 91, 38-46.
[11] Haghshenas, B., Nami, Y., Abdullah, N., Radiah, D., Rosli, R., Barzegari, A., & Yari Khosroushahi, A. (2015). Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. International Journal of Food Science & Technology, 50(4), 1056-1064.
[12] Motawee, M. M., & Neveen, S. M. (2016). Effect of Starter Culture as a Source of Microbial Contamination on the Quality and Safety of Yogurt in Giza, Egypt. International Journal of Food Science and Nutrition Engineering, 6(5), 103-111.
[13] Abreu, E. D., Zeni, J., Steffens, C., & Steffens, J. (2016). Frozen yogurt from sheep milk. Revista Ceres, 63(5), 605-613.
[14] Çakmakçi, S., Çetin, B., Turgut, T., Gürses, M., & Erdoğan, A. (2012). Probiotic properties, sensory qualities, and storage stability of probiotic banana yogurts. Turkish Journal of Veterinary and Animal Sciences, 36(3), 231-237.
[15] Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food chemistry, 111(1), 50-55.
[16] Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT-Food Science and Technology, 65, 978-986.
[17] Hassani. B. & SHarifi. A. (2012). Application of Anthocyanin extracted from barberry in food processing. International Journal of Agri Science Vol. 2(6): 522-528.
[18] Hekmat, S., Morgan, K., Soltani, M., & Gough, R. (2015). Sensory evaluation of locally-grown fruit purees and inulin fibre on probiotic yogurt in mwanza, Tanzania and the microbial analysis of probiotic yogurt fortified with Moringa oleifera. Journal of health, population, and nutrition, 33(1), 60.
[19] Kulkarni, S., Haq, S. F., Samant, S., & Sukumaran, S. (2017). Adaptation of Lactobacillus acidophilus to Thermal Stress Yields a Thermotolerant Variant Which Also Exhibits Improved Survival at pH 2. Probiotics and antimicrobial proteins, 1-11.
[20] Salmerón, I., Thomas, K., & Pandiella, S. S. (2015). Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. Journal of Functional Foods, 15, 106-115.
[21] Vasconcelos, B. G., Martinez, R. C. R., de Castro, I. A., & Saad, S. M. I. (2014). Innovative açaí (Euterpe oleracea, Mart., Arecaceae) functional frozen dessert exhibits high probiotic viability throughout shelf-life and supplementation with inulin improves sensory acceptance. Food Science and Biotechnology, 23(6), 1843-1849.
[22] de Araújo Etchepare, M., Raddatz, G. C., de Moraes Flores, É. M., Zepka, L. Q., Jacob-Lopes, E., Barin, J. S., & de Menezes, C. R. (2016). Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Science and Technology, 65, 511-517.
[23] EshaghiMakouei, G., & Movassagh, M. H. (2018). Viability of Lactobacillus acidophilus in the cocoa ice cream containing sweetener Stevia. Iranian Journal of Food Science and Technology, 82(15), 73-83.
[24] Akalın, A. S., & Erişir, D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low‐fat probiotic ice cream. Journal of food science, 73(4), M184-M188.
[25] Sameen, A., Manzoor, M. F., Khan, M. I., Sahar, A., & Saddique, A. (2016). Quality evaluation of ice cream prepared with phoenix dactylifera syrup as a substitute of sugar. Pakistan Journal of Food Sciences, 26(4), 226-233.
[26] Tsuchiya, A. C., da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749-758.
[27] Rolon, M. L., Bakke, A. J., Coupland, J. N., Hayes, J. E., & Roberts, R. F. (2017). Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream. Journal of Dairy Science.
[28] Ismail, E. A., Al-Saleh, A., & Metwalli, M. (2013). Effect of Inulin Supplementation on Rheological Properties of Low-Fat Ice Cream. Life Science Journal, 10(3), 1742- 1746.
[29] Varela, P., Pintor, A., & Fiszman, S. (2014). How hydrocolloids affect the temporal oral perception of ice cream. Food hydrocolloids, 36, 220-228.
[30] Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modification by ice-binding proteins. Food chemistry, 246, 164-171.
[31] Gheybi, N., RaftaniAmiri, Z., & Kasaai, M. R. (2017). Effect of stevia and inulin on the structure, physicochemical and sensory properties of dietetic ice cream. Iranian Journal of Food Science and Technology, 63(14), 1-14.
[32] Akın, M. B., Akın, M. S., & Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food chemistry, 104(1), 93-99.
[33] Karthikeyan, N., Elango, A., Kumaresan, G., Gopalakrishnamurty, T. R., & Raghunath, B. V. (2014). Enhancement of probiotic viability in ice cream by microencapsulation. International Journal Science Environment Technology, 3(1), 339-47.
[34] Guven, M., Yasar, K., Karaca, O. B., & Hayaloglu, A. A. (2005). The effect of inulin as a fat replacer on the quality of set‐type low‐fat yogurt manufacture. International Journal of Dairy Technology, 58(3), 180-184.
[35] Martin, M. Á., Goya, L., & Ramos, S. (2016). Cocoa Flavonoids and Insulin Signaling. In Molecular Nutrition and Diabetes (pp. 183-196).
[36] Janiszewska-Turak, E., Pisarska, A., & Królczyk, J. B. (2016). Natural food pigments application in food products. Nauka Przyroda Technologie, 10(4), 51.
[37] Rouhi, M., Taslimi, A., Sarlak, Z., Mohammadi, R., Shadnoosh, M., Mortazavian, A. M. & Saburi, S. (2015). Sucrose and D-tagatose fermentation profile by different probiotic strains and its effect on physical properties of chocolate milk. Koomesh, 17(1), 239-249.