1. Ranjbar, S., Noori, M., Nazari, R, 2010, Study of milk aflatoxin M1 and its relationship with feed fungi flora in Markazi Province, Journal of Cell & Tissue, 1(1), 9-18 (in Persian).
2. da Silva Alves, A. M., de Souza Lima, P. H., da Costa, M. A. S., da Silva, C. B., dos Santos Sousa, J., Pereira, D. D. S. T., & de Freitas, J. D, 2018, Determination of aflatoxin M1 in bovine milk from the Alagoas/Brazil State dairy belt by high performance liquid chromatography (HPLC), African Journal of Microbiology Research, 12(25), 580-586.
3. Schwartzbord, J., Severe, L., & Brown, D, 2017, Detection of trace aflatoxin M1 in human urine using a commercial ELISA followed by HPLC, Biomarkers, 22(1), 1-4.
4. Assaf, J. C., Nahle, S., Chokr, A., Louka, N., Atoui, A., & El Khoury, A, 2019, Assorted methods for decontamination of aflatoxin M1 in milk using microbial adsorbents, Toxins, 11(6), 304.
5. Scussel, V. M, 2003, Comparison of methods by TLC and HPTLC for determination of aflatoxin M1 in milk and B1 in eggs, Food Science and Technology, 23, 46-52.
6. Wang, H., Zhou, X. J., Liu, Y. Q., Yang, H. M., & Guo, Q. L, 2011, Simultaneous determination of chloramphenicol and aflatoxin M1 residues in milk by triple quadrupole liquid chromatography− tandem mass spectrometry, Journal of agricultural and food chemistry, 59(8), 3532-3538.
7. Niazi, S., Khan, I. M., Yu, Y., Pasha, I., Lv, Y., Mohsin, A., & Wang, Z. 2020. A novel fluorescent aptasensor for aflatoxin M1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher. Sensors and Actuators B: Chemical, 128049.
8. He, L., Shen, Z., Wang, J., Zeng, J., Wang, W., Wu, H., & Gan, N, 2020, Simultaneously responsive microfluidic chip aptasensor for determination of kanamycin, aflatoxin M1, and 17β-estradiol based on magnetic tripartite DNA assembly nanostructure probes, Microchimica Acta, 187(3), 1-11.
9. Kaur, N., Bharti, A., Batra, S., Rana, S., Rana, S., Bhalla, A., Prabhakar, N, 2019, An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A, Microchemical Journal, 144, 102–109.
10. Kang, M., Li, Z., Hu, M., Oderinde, O., Hu, B., He, L., & Du, M, 2020, Bimetallic MnCo oxide nanohybrids prepared from Prussian blue analogue for application as impedimetric aptasensor carrier to detect myoglobin, Chemical Engineering Journal, 125117.
11. Azri, F. A., Eissa, S., Zourob, M., Chinnappan, R., Sukor, R., Yusof, N. A., & Jinap, S, 2020, Electrochemical determination of zearalenone using a label-free competitive aptasensor, Microchimica Acta, 187, 1-10.
12. Tangkuaram, T., Ponchio, C., Kangkasomboon, T., Katikawong, P., & Veerasai, W, 2007, Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan, Biosensors and Bioelectronics, 22(9-10), 2071-2078.
13. Renedo, O. D., & Martinez, M. J. A, 2007, Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes, Analytica chimica acta, 589(2), 255-260.
14. Renedo, O. D., Alonso-Lomillo, M. A., & Martínez, M. A, 2007, Recent developments in the field of screen-printed electrodes and their related applications, Talanta, 73(2), 202-219.
15. Thiyagarajan, N., Chang, J. L., Senthilkumar, K., & Zen, J. M, 2014, Disposable electrochemical sensors: A mini review, Electrochemistry communications, 38, 86-90.
16. Chan, K. F., Lim, H. N., Shams, N., Jayabal, S., Pandikumar, A., & Huang, N. M, 2016, Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen, Materials Science and Engineering: C, 58, 666-674.
17. Fang, S., Dong, X., Liu, S., Penng, D., He, L., Wang, M., & Zhang, Z, 2016, A label-free multi-functionalized electrochemical aptasensor based on a Fe3O4@ 3D-rGO@ plasma-polymerized (4-vinyl pyridine) nanocomposite for the sensitive detection of proteins in whole blood, Electrochimica Acta, 212, 1-9.
18. Tıg, G. A., & Pekyardımc, Ş, 2020, An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles, Talanta, 210, 120666.
19. Bernalte, E., Sánchez, C. M., & Gil, E. P, (2011), Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes, Analytica chimica acta, 689(1), 60-64.
20. Rueda-Holgado, F., Bernalte, E., Palomo-Marín, M. R., Calvo-Blazquez, L., Cereceda-Balic, F., & Pinilla-Gil, E, (2012), Miniaturized voltammetric stripping on screen printed gold electrodes for field determination of copper in atmospheric deposition, Talanta, 101, 435-439.
21. Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., & Wang, P, 2015, Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper, Sensors and Actuators B: Chemical, 209, 336-342.
22. Istamboulié, G., Paniel, N., Zara, L., Granados, L. R., Barthelmebs, L., & Noguer, T, 2016, Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk, Talanta, 146, 464-469.
23. Radoń, A., Drygała, A., Hawełek, Ł., & Łukowiec, D, 2017, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers, Materials Characterization, 131, 148-156.
24. Hemmati, M. H., & Ekrami-Kakhki, M. S, 2018, Electrochemical sensor for sulfite determination based on a nanostructured Fe3O4 modified electrode, Analytical & bioanalytical electrochemistry, 10(5), 576-586.
25. Su, W. Y., Wang, S. M., & Cheng, S. H, 2011, Electrochemically pretreated screen-printed carbon electrodes for the simultaneous determination of aminophenol isomers, Journal of Electroanalytical Chemistry, 651(2), 166-172.