مدل سازی ریاضی لایه نازک سیر درخشک‌کن هوای داغ وتحت خلاء

نویسندگان
1 دانش آموخته ، گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 دانشجو دکتری علوم و صنایع غذایی، مسئول تحقیقات و توسعه شرکت آذر نان نظری، تبریز، ایران
چکیده
سیر یکی از محصولات مهم کشاورزی در ایران و یکی از منابع عمده تحصیل ارز برای کشور می­باشد. با توجه به ضایعات بالا در این محصول جهت نگهداری، افزایش زمان ماندگاری و حفظ کیفیت آن لازم است از روش­های مناسب نگهداری مانند خشک­کردن استفاده شود. در این تحقیق، ورقه­های سیر بصورت لایه نازک در دماهای50،60،70 درجه سلسیوس و در دو نوع خشک­کن تحت خلاء و هوای داغ خشک شدند. سپس مناسب­ترین مدل برای توصیف سینتیک خشک­کردن ورقه­های سیر بصورت لایه نازک در محدوده دما و نوع خشک­کن به کاررفته، توسعه داده‌شد. ضریب نفوذ موثر رطوبت، مقدار انرژی فعال­سازی، چروکیدگی، قابلیت جذب مجدد آب نمونه­های سیر طی فرایند خشک­کردن مورد اندازه­گیری قرار‌گرفت. در تحقیق حاضر با بررسی9 مدل تجربی مختلف و با محاسبه معیارهای آماری R2,RMSE,x2 بین داده­های تجربی و نتایج پیش بینی شده توسط هر مدل، ، مناسب­ترین مدل توصیف کننده سینتیک خشک­کردن ورقه­های نازک سیر مدل پبج انتخاب شد. نتایج نشان داد که مقادیر ضریب نفوذ موثر رطوبت ورقه­های سیر برای دماهای مختلف و در دو نوع خشک­کن در محدوده 9-10 × 5/1 تا 9-10 × 6/6 مترمربع بر ثانیه متغیر است. تغییرات ضریب نفوذ رطوبت به عنوان تابعی از دمای هوای خشک­کردن با رابطه آرنیوس توصیف گردید و مقدار انرژی فعال­سازی بین673/14 و 175/53 کیلوژول بر مول محاسبه شد. همچنین نتایج بیانگر آن بود که چروکیدگی محصول به دمای هوا و نوع خشک­کن وابسته نمی‌باشد و قابلیت جذب مجدد آب نمونه­های سیر با کاهش محتوی رطوبت آنها بطور جزئی افزایش پیدا کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Mathematical modeling of thin-layer garlic with hot air dryer and under vacuum

نویسندگان English

Fariba Sohrabi 1
Narmela Asefi 2
Armaghan Salem 3
1 Graduate, Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 Associate Professor, Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Ph.D. student, Research and development maneger of Azar Nan Nazari company, Tabriz, Iran.
چکیده English

Garlic( Allium Satirum L) is one of the most important agricultural products in Iran and one of the major sources of foreign exchange for the country. Due to the high waste in this product to maintain, increase shelf life, and keep its quality, it is necessary to use appropriate storage methods such as drying. In this study, a thin layer of garlic slices was dried at 50, 60, 70 ° C, and in two types of dryers (vacuum and hot air). The most suitable model was developed to describe the drying kinetics of garlic flakes as a thin layer in the temperature range and type of dryer used. Effective moisture penetration coefficient, amount of activation energy, shrinkage, water reabsorption of garlic samples were measured during the drying process. in the present study, by examining 9 different experimental models and calculating the statistical criteria of R2, RMSE, x2 between the experimental data and the results predicted by each model, the most appropriate model describing the drying kinetics of garlic thin slices was the Page model. The results showed that the effective diffusion coefficient of garlic leaf moisture for different temperatures and in two types of dryers was in the range of 1.5* 10-9 to 6.6 * 10 -9 m2/s. Changes in the moisture diffusion coefficient were described as a function of drying air temperature with Arrhenius and the amount of activation energy was calculated between 14.673 and 53.175 kJ / mol. The results also showed that the shrinkage of the product was not dependent on air temperature and the type of dryer and the water re-absorption capacity of garlic samples increased slightly by decreasing their moisture content.

کلیدواژه‌ها English

Garlic
Vacuum dryer
hot air dryer
moisture penetration coefficient
Activation energy
1. Feng, Y., et al., Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chemistry, 2020: p. 128404.
2. Singh, P., et al., Effect of drying characteristics of garlic-a review. Journal of Food Processing and Technology, 2014. 5(4).
3. Babetto, A., et al., Drying of garlic slices: Kinetics and nonlinearity measures for selecting the best equilibrium moisture content equation. Journal of Food Engineering, 2011. 107(3-4): p. 347-352.
4. Lamidi, R.O., et al., Recent advances in sustainable drying of agricultural produce: A review. Applied energy, 2019. 233: p. 367-385.
5. Onwude, D.I., N. Hashim, and G. Chen, Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 2016. 57: p. 132-145.
6. Turkiewicz, I.P., et al., Influence of different drying methods on the quality of Japanese quince fruit. LWT, 2019. 114: p. 108416.
7. Madamba, P., R. Driscoll, and K. Buckle, Shrinkage, density and porosity of garlic during drying. Journal of Food Engineering, 1994. 23(3): p. 309-319.
8. Karathanos, V.T. and V.G. Belessiotis, Application of a thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 1999. 74(4): p. 355-361.
9. Akpinar, E., A. Midilli, and Y. Bicer, Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy conversion and management, 2003. 44(10): p. 1689-1705.
10. Zomorodian, A. and M. Moradi, Mathematical modeling of forced convection thin layer solar drying for Cuminum cyminum. 2010.
11. Younis, M., D. Abdelkarim, and A.Z. El-Abdein, Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi journal of biological sciences, 2018. 25(2): p. 332-338.
12. Figiel, A., Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 2009. 94(1): p. 98-104.
13. Rasouli, M. and s. Seiiedlou, Brief report: a study of the shrinkage changes and mathematical modeling of garlic (Allium sativm.) during convection drying. 2012. 2(1).
14. Babalis, S.J., et al., Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of food engineering, 2006. 75(2): p. 205-214.
15. HASSAN, B.H. and A.I. HOBANI, Thin‐layer drying of dates. Journal of Food Process Engineering, 2000. 23(3): p. 177-189.
16. Goyal, R., et al., Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 2006. 95(1): p. 43-49.
17. Sonmete, M.H., et al., Mathematical modeling of thin layer drying of carrot slices by forced convection. Journal of Food Measurement and Characterization, 2017. 11(2): p. 629-638.
18. Sadeghi, E., K. Movagharnejad, and A. Haghighi Asl, Mathematical modeling of infrared radiation thin‐layer drying of pumpkin samples under natural and forced convection. Journal of Food Processing and Preservation, 2019. 43(12): p. e14229.
19. Sharma, G., R. Verma, and P. Pathare, Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of food engineering, 2005. 71(3): p. 282-286.
20. Lahsasni, S., et al., Characteristic drying curve and mathematical modeling of thin‐layer solar drying of prickly pear cladode (opuntia ficus indica). Journal of food process engineering, 2004. 27(2): p. 103-117.
21. Vazquez, G., et al., The dehydration of garlic. 1. Desorption isotherms and modelling of drying kinetics. Drying technology, 1999. 17(6): p. 1095-1108.
22. A.O.A.C, Official Methods of Analysis, in 16th ed. 1998, Association of Official Analytical Chemists: Washington, DC.
23. Akgun, N.A. and I. Doymaz, Modelling of olive cake thin-layer drying process. Journal of food Engineering, 2005. 68(4): p. 455-461.
24. Doymaz, I., Air-drying characteristics of tomatoes. Journal of Food engineering, 2007. 78(4): p. 1291-1297.
25. Demir, V., et al., Mathematical modelling and the determination of some quality parameters of air-dried bay leaves. Biosystems engineering, 2004. 88(3): p. 325-335.
26. Doymaz, I., Convective air drying characteristics of thin layer carrots. Journal of food engineering, 2004. 61(3): p. 359-364.
27. Toğrul, İ.T. and D. Pehlivan, Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of food engineering, 2004. 65(3): p. 413-425.
28. Midilli, A., H. Kucuk, and Z. Yapar, A new model for single-layer drying. Drying technology, 2002. 20(7): p. 1503-1513.
29. Seiiedlou, S., et al., Convective drying of apple: Mathematical modeling and determination of some quality parameters. International journal of agriculture and biology, 2010. 12(2): p. 171-178.
30. Madamba, P.S., R.H. Driscoll, and K.A. Buckle, The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 1996. 29: p. 75–97.
31. Babalis, S.J. and V.G. Belessiotis, Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of food Engineering, 2004. 65(3): p. 449-458.
32. Mohsenin, N.N., Physical properties of plant and animal materials. 1986.
33. Maskan, M., Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of food engineering, 2001. 48(2): p. 177-182.
34. Koc, B., I. Eren, and F.K. Ertekin, Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. Journal of food engineering, 2008. 85(3): p. 340-349.
35. Vega, A., et al., Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT-Food Science and Technology, 2007. 40(10): p. 1698-1707.
36. Pirmoradi, M. and M. Mostafaei, Evaluation of the best kinetic model in thin layer drying of kumquat based on desirability function. Agricultural Mechanization, 2017. 4(1).
37. Madamba, P.S., R.H. Driscoll, and K.A. Buckle, The thin-layer drying characteristics of garlic slices. Journal of food engineering, 1996. 29(1): p. 75-97.
38. Argo, B.D., S. Sandra, and U. Ubaidillah, Mathematical modeling on the thin layer drying kinetics of cassava chips in a multipurpose convective-type tray dryer heated by a gas burner. Journal of Mechanical Science and Technology, 2018. 32(7): p. 3427-3435.
39. Ashraf, Z., E.Z. HAMIDI, and M. Sahari, Evaluation and characterization of vacuum drying of date paste. 2012.
40. Salehi, F., Investigation of Thin Layer-Drying Kinetics of Strawberry Using Infrared Radiation. Journal of Food Technology & Nutrition, 2019. 17(1): p. 109-117.
41. Omid, M., A. Yadollahinia, and S. Rafiee, Development of a kinetic model for thin layer drying of Paddy, Fajr variety. Biosystem Engineering of Iran, 2010. 41: p. 153-160.
42. Akpinar, E.K., Y. Bicer, and F. Cetinkaya, Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of food engineering, 2006. 75(3): p. 308-315.
43. Karami, H. and M. Rasekh, Kinetics mass transfer and modeling of tarragon drying (Artemisia dracunculus L.). Iranian Journal of Medicinal and Aromatic Plants, 2018. 34(5): p. 734-747.
44. Koocheki, A., et al., Physical properties of watermelon seed as a function of moisture content and variety. International Agrophysics, 2007. 21(4): p. 349-359.
45. Bon, J., et al., Drying characteristics of hemispherical solids. Journal of Food Engineering, 1997. 34(2): p. 109-122.
46. Tolaba, M. and C. Suarez, Simulation of the thin-layer drying of corn by means of the diffusional model. LWT-Food Science and Technology, 1988. 21(2): p. 83-86.
47. Sacilik, K., R. Keskin, and A.K. Elicin, Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of food Engineering, 2006. 73(3): p. 231-238.
48. Simal, S., et al., Drying models for green peas. Food Chemistry, 1996. 55(2): p. 121-128.
49. Carbonell, J., et al., The dehydration of paprika with ambient and heated air and the kinetics of colour degradation during storage. Journal of Food Engineering, 1986. 5(3): p. 179-193.
50. Kashaninejad, M., et al., Thin-layer drying characteristics and modeling of pistachio nuts. Journal of food engineering, 2007. 78(1): p. 98-108.
51. Talla, A., et al., Shrinkage and density evolution during drying of tropical fruits: application to banana. Journal of Food Engineering, 2004. 64(1): p. 103-109.
52. Ratti, C., Shrinkage during drying of foodstuffs. Journal of food engineering, 1994. 23(1): p. 91-105.