[1] Shah, B.R., Y. Li, W. Jin, Y. An, L. He, Z. Li, W. Xu, and B. Li. 2016. Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Materials Science and Engineering. 52: 369-377.
[2] Vozza, G., M. Khalid, H.J. Byrne, S.M. Ryan, and J.M. Frias. 2019. Nutraceutical formulation, characterisation, and in-vitro evaluation of methylselenocysteine and selenocystine using food derived chitosan:zein nanoparticles. Food Research International. 120: 295-304.
[3] Maleki, G. and J.M. Milani. 2020. Chapter 6 - Functional properties of chitin and chitosan-based polymer materials, in Handbook of Chitin and Chitosan, S. Gopi, S. Thomas, and A. Pius, Editors, Elsevier. p. 177-198.
[4] Xia, W., P. Liu, J. Zhang, and J. Chen. 2011. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 25(2): 170-179.
[5] Aranaz, I., M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, and Á. Heras. 2009. Functional characterization of chitin and chitosan. Current chemical biology. 3(2): 203-230.
[6] Akbari-Alavijeh, S., R. Shaddel, and S.M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids. 105: 105774.
[7] Zhang, C., Y. Ding, Q. Ping, and L. Yu. 2006. Novel chitosan-derived nanomaterials and their micelle-forming properties. Journal of agricultural food chemistry. 54(22): 8409-8416.
[8] Baruch, L. and M. Machluf. 2006. Alginate–chitosan complex coacervation for cell encapsulation: Effect on mechanical properties and on long‐term viability. Biopolymers: Original Research on Biomolecules. 82(6): 570-579.
[9] Asada, M., H. Takahashi, H. Okamoto, H. Tanino, and K. Danjo. 2004. Theophylline particle design using chitosan by the spray drying. International Journal of pharmaceutics. 270(1-2): 167-174.
[10] Ribeiro, A.J., C. Silva, D. Ferreira, and F. Veiga. 2005. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European journal of pharmaceutical sciences. 25(1): 31-40.
[11] Lee, M., Y.W. Cho, J.H. Park, H. Chung, S.Y. Jeong, K. Choi, D.H. Moon, S.Y. Kim, I.-S. Kim, and I.C. Kwon. 2006. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polymer Science. 284(5): 506-512.
[12] Mudhakir, D., C. Wibisono, and H. Rachmawati. 2014. Encapsulation of Risperidone into Chitosan-based Nanocarrier via Ionic Binding Interaction. Procedia Chemistry. 13: 92-100.
[13] Wu, J., Y. Wang, H. Yang, X. Liu, and Z. Lu. 2017. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydrate Polymers. 175: 170-177.
[14] Nair, R.S., A. Morris, N. Billa, and C.-O. Leong. 2019. An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery. AAPS PharmSciTech. 20(2): 69.
[15] Al-Nemrawi, N., S. Alsharif, and R. Dave. 2018. Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. International Journal of Applied Pharmaceutics. 10(5): 60-65.
[16] Shah, B.R., C. Zhang, Y. Li, and B. Li. 2016. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International. 89: 399-407.
[17] Fan, W., W. Yan, Z. Xu, and H. Ni. 2012. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids surfaces B: Biointerfaces. 90: 21-27.
[18] Csaba, N., M. Köping-Höggård, and M.J. Alonso. 2009. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International journal of pharmaceutics. 382(1-2): 205-214.
[19] Pillai, C.K.S., W. Paul, and C.P. Sharma. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34(7): 641-678.
[20] Laplante, S., S.L. Turgeon, and P. Paquin. 2005. Emulsion stabilizing properties of various chitosans in the presence of whey protein isolate. Carbohydrate Polymers. 59(4): 425-434.
[21] Ribeiro, E.F., J. Borreani, G. Moraga, V.R. Nicoletti, A. Quiles, and I. Hernando. 2020. Digestibility and Bioaccessibility of Pickering Emulsions of Roasted Coffee Oil Stabilized by Chitosan and Chitosan-Sodium Tripolyphosphate Nanoparticles. Food Biophysics. 15(2): 196-205.
[22] Hadidi, M., S. Pouramin, F. Adinepour, S. Haghani, and S.M. Jafari. 2020. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydrate Polymers. 236: 116075.
[23] de Carvalho, F.G., T.C. Magalhães, N.M. Teixeira, B.L.C. Gondim, H.L. Carlo, R.L. dos Santos, A.R. de Oliveira, and Â.M.L. Denadai. 2019. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Materials Science and Engineering: C. 104: 109885.
[24] Yegnanarayana, B. 2009. Artificial neural networks. PHI Learning Pvt. Ltd.
[25] Fausett, L.V. 2006. Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India.
[26] Walczak, S. 2019. Artificial neural networks, in Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, IGI Global. p. 40-53.
[27] Caccavo, D. 2019. An overview on the mathematical modeling of hydrogels’ behavior for drug delivery systems. International Journal of Pharmaceutics. 560: 175-190.
[28] Liu, J. 2013. Radial Basis Function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation. Springer Science & Business Media.
[29] Priddy, K.L. and P.E. Keller. 2005. Artificial neural networks: an introduction. Vol. 68: SPIE press.
[30] Calvo, P., C. Remunan‐Lopez, J.L. Vila‐Jato, and M. Alonso. 1997. Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science. 63(1): 125-132.
[31] Rezaeinia, H., B. Ghorani, B. Emadzadeh, and N. Tucker. 2019. Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocolloids. 93: 374-385.
[32] Alehosseini, A., M. Sarabi-Jamab, B. Ghorani, and R. Kadkhodaee. 2019. Electro-encapsulation of Lactobacillus casei in high-resistant capsules of whey protein containing transglutaminase enzyme. LWT. 102: 150-158.
[33] Wang, X.-Y. and M.-C. Heuzey. 2016. Chitosan-based conventional and Pickering emulsions with long-term stability. J Langmuir. 32(4): 929-936.
[34] Ghasemi, S., S.M. Jafari, E. Assadpour, and M. Khomeiri. 2018. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids. 77: 152-162.
[35] Ojagh, S.M., M. Rezaei, S.H. Razavi, and S.M.H. Hosseini. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. 122(1): 161-166.
[36] Alehosseini, E. 2013. Modeling of the effect of cleaning, moisture, and temperature on the quantitative and qualitative characteristics of wheat and application of artificial neural networks (ANN) to predict the related indicators, in Department of Food Science and Technology, Islamic Azad University: Science and Research Branch.
[37] Hashad, R.A., R.A.H. Ishak, S. Fahmy, S. Mansour, and A.S. Geneidi. 2016. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International Journal of Biological Macromolecules. 86: 50-58.
[38] Bozuyuk, U., N.O. Dogan, and S. Kizilel. 2018. Deep insight into PEGylation of bioadhesive chitosan nanoparticles: Sensitivity study for the key parameters through artificial neural network model. ACS applied materials interfaces. 10(40): 33945-33955.
[39] Esmaeilzadeh-Gharedaghi, E., M.A. Faramarzi, M.A. Amini, A. Rouholamini Najafabadi, S.M. Rezayat, and A. Amani. 2012. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study. Pharmaceutical development technology. 17(5): 638-647.
[40] Youshia, J., M.E. Ali, and A. Lamprecht. 2017. Artificial neural network based particle size prediction of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 119: 333-342.
[41] Heidari, E., M.A. Sobati, and S. Movahedirad. 2016. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometrics and Intelligent Laboratory Systems. 155: 73-85.
[42] Hezave, A.Z., M. Lashkarbolooki, and S. Raeissi. 2012. Using artificial neural network to predict the ternary electrical conductivity of ionic liquid systems. Fluid Phase Equilibria. 314: 128-133.
[43] Abdou, E.S., A. Osheba, and M. Sorour. 2012. Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. International Journal of Applied. 2(7).
[44] Gaya, M., M. Zango, L. Yusuf, M. Mustapha, B. Muhammad, A. Sani, A. Tijjani, N. Wahab, and M. Khairi. 2017. Estimation of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique. Indonesian Journal of Electrical Engineering Computer Science. 5(3): 666-672.
[45] Marić, L., E. Malešić, A. Jurinjak Tušek, M. Benković, D. Valinger, T. Jurina, and J. Gajdoš Kljusurić. 2020. Effects of drying on physical and chemical properties of root vegetables: Artificial neural network modelling. Food and Bioproducts Processing. 119: 148-160.
[46] Gürgen, A., E. Topaloğlu, D. Ustaömer, S. Yıldız, and N. Ay. 2019. Prediction of the colorimetric parameters and mass loss of heat-treated bamboo: Comparison of multiple linear regression and artificial neural network method. Color research and application. 44(5): 824-833.
[47] Alehossein, E., S.M. Jafari, A. Motamedzadegan, and A. Alehossein. 2016. Evaluation of artificial neural networks (ANNs) in predicting the effects of cleaning, moisture content, temperature and time on the physical and microbial characteristics of wheat. Journal of Food Research (Agricultural Science). 26(4): 577-588.
[48] Alehosseini, A., M. Sarabi Jamab, B. Ghorani, R. Kadkhodaee, and S. Wongsasulak. 2017. Evaluating the performance of artificial neural networks (ANNs) for predicting the effect of polymer concentration and operating voltage on the physical properties of electrosprayed particles. Innovative food technologies. 4(4): 31-43.