[1] Goetzke, B., Nitzko, S., & Spiller, A. (2014). Consumption of organic and functional food. A matter of well-being and health?. Appetite, 77, 96-105.
[2] Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative medicine and cellular longevity, 2016.
[3] Gomes, B., Augusto, M. T., Felício, M. R., Hollmann, A., Franco, O. L., Gonçalves, S., & Santos, N. C. (2018). Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology advances, 36(2), 415-429.
[4] Schlesinger, A., Paul, M., Gafter-Gvili, A., Rubinovitch, B., & Leibovici, L. (2009). Infection-control interventions for cancer patients after chemotherapy: a systematic review and meta-analysis. The Lancet Infectious Diseases, 9(2), 97-107.
[5] Konovalova, M. V., Zubareva, A. A., Lutsenko, G. V., & Svirshchevskaya, E. V. (2018). Antimicrobial peptides in health and disease. Applied Biochemistry and Microbiology, 54(3), 238-244.
[6] Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods, 1(2), 177-187.
[7] Muro Urista, C., Álvarez Fernández, R., Riera Rodriguez, F., Arana Cuenca, A., & Tellez Jurado, A. (2011). Production and functionality of active peptides from milk. Food Science and Technology International, 17(4), 293-317.
[8] García-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(3), 226-236.
[9] Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., ... & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 21(6), 752.
[10] Giansanti, F., Panella, G., Arienzo, A., Leboffe, L., & Antonini, G. (2018). Nutraceutical peptides from lactoferrin. J. Adv. Dairy Res, 6(1), 199.
[11] Patel, S. (2015). Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods, 19, 308-319.
[12] Aarabi, A., Mizani, M., & Honarvar, M. (2017). The use of sugar beet pulp lignin for the production of vanillin. International journal of biological macromolecules, 94, 345-354.
[13] Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., & Kawase, K. (1991). Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. Journal of dairy science, 74(12), 4137-4142.
[14] Dryáková, A., Pihlanto, A., Marnila, P., Čurda, L., & Korhonen, H. J. (2010). Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology, 230(6), 865-874.
[15] Expósito, I. L., & Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal, 16(11), 1294-1305.
[16] Hickey, R. M., Twomey, D. P., Ross, R. P., & Hill, C. (2003). Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology, 149(3), 655-664.
[17] Power-Grant, O., Bruen, C., Brennan, L., Giblin, L., Jakeman, P., & FitzGerald, R. J. (2015). In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis. Food & Function, 6(3), 972-980.
[18] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
[19] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), 1198-1205.
[20] Harouna, S., Carraminana, J. J., Navarro, F., Pérez, M. D., Calvo, M., & Sánchez, L. (2015). Antibacterial activity of bovine milk lactoferrin on the emerging foodborne pathogen Cronobacter sakazakii: Effect of media and heat treatment. Food control, 47, 520-525.
[21] Bokkhim, H., Tran, T., Bansal, N., Grøndahl, L., & Bhandari, B. (2014). Evaluation of different methods for determination of the iron saturation level in bovine lactoferrin. Food chemistry, 152, 121-127.
[22] Wada, Y., & Lönnerdal, B. (2014). Bioactive peptides derived from human milk proteins—mechanisms of action. The Journal of nutritional biochemistry, 25(5), 503-514.
[23] Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. International journal of peptides, 2013.
[24] Stark, M., Liu, L. P., & Deber, C. M. (2002). Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial agents and chemotherapy, 46(11), 3585-3590.
[25] Purkayasthaa, S. P., Dasb, B., Bhattacharyyac, K. G., & Deb, B. (2014). A new polymeric sodium complex of vanillin: Synthesis, characterisation and antibacterial activity. J. Indian Chem. Soc, 91, 1-6.
[26] Fitzgerald, D. J., Stratford, M., Gasson, M. J., & Narbad, A. (2004). The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. Journal of food protection, 67(2), 391-395.
[27] Salami, M., Yousefi, R., Ehsani, M. R., Razavi, S. H., Chobert, J. M., Haertlé, T., ... & Moosavi-Movahedi, A. A. (2009). Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: Possible significance for use in infant formula. International Dairy Journal, 19(9), 518-523.
[28] Ruiz-Giménez, P., Salom, J. B., Marcos, J. F., Vallés, S., Martínez-Maqueda, D., Recio, I., ... & Manzanares, P. (2012). Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: identification of novel active peptides. Food Chemistry, 131(1), 266-273.
[29] Lawen, A., & Lane, D. J. (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxidants & redox signaling, 18(18), 2473-2507.
[30] Chandra Mohan, K. V. P., Letchoumy, P. V., Hara, Y., & Nagini, S. (2008). Combination chemoprevention of hamster buccal pouch carcinogenesis by bovine milk lactoferrin and black tea polyphenols. Cancer investigation, 26(2), 193-201.
[31] Ramachandra Rao, S., & Ravishankar, G. A. (2000). Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80(3), 289-304.
[32] Tong, L. M., Sasaki, S., McClements, D. J., & Decker, E. A. (2000). Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. Journal of Agricultural and Food Chemistry, 48(5), 1473-1478.
[33] Peña‐Ramos, E. A., Xiong, Y. L., & Arteaga, G. E. (2004). Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. Journal of the Science of Food and Agriculture, 84(14), 1908-1918.
[34] Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(2), 170-177.
[35] Elia, D., Stadler, K., Horváth, V., & Jakus, J. (2006). Effect of soy-and whey protein-isolate supplemented diet on the redox parameters of trained mice. European journal of nutrition, 45(5), 259-266.