بررسی اثرات ضد‌میکروبی و آنتی‌اکسیدانی مکمل غذایی تهیه شده با پروتئین‌های هیدرولیز شده شیر و وانیلین

نویسندگان
1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
2 گروه علوم و صنایع غذایی،دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
3 گروه سم شناسی- دانشگاه آزاد اسلامی واحد شهرضا
چکیده
امروزه به دلیل گسترش بیماری‌ها و عوارض ناشی از آنها و همچنین هزینه‌های بالای درمان، استفاده از غذاهای عملگر و سلامتی بخش مورد توجه دانشمندان قرار گرفته است. در این زمینه توجه به عوارضی مانند عفونت و توسعه بیماریها در اثر گسترش رادیکالهای آزاد بیشتر است. یکی از گزینه هایی که امروزه در پیشگیری، درمان و کاهش عوارض بیماری مورد توجه است پپتیدهای فعال بیولوژیکی است که از منابع گیاهی و جانوری استخراج می شود. در تحقیق حاضر پپتیدهای حاصل از هیدرولیز شیر شامل پپتیدهای بدست آمده از آب پنیر و لاکتوفرین همراه با طعم دهنده وانیلین در جهت کاهش عفونت و افزایش قدرت سیستم آنتی‌اکسیدانی در آزمایشگاه بررسی شدند. پس از آماده سازی پروتئین‌های هیدرولیز‌شده از شیر و تهیه مکمل غذایی از آن همراه با طعم‌دهنده وانیلین آزمون‌های ضد میکروبی علیه باکتری استافیلوکوکس اورئوس و اشرشیا کلی انجام شد.همچنین اثرات آنتی اکسیدانی این پپتیدها همراه با مخلوط مکمل تهیه شده از آن مورد آزمایش قرار گرفت. نتایج نشان داد که پپتیدهای حاصل از و لاکتوفرین و کنستانتره پروتئین آب‌پنیر به تنهایی و به‌صورت مخلوط دارای اثرات ضد‌میکروبی به ترتیب در غلظت های2000، 4000 و 1000 میکروگرم بر میلی‌لیتر هستند. همچنین نتایج آزمون‌های آنتی‌اکسیدانی در سیستم DPPH ،ABTS و قدرت احیا‌کنندگی، توانایی مناسب این اجزا را در غلظت 400 میلی گرم بر میلی لیتر نشان داد و در بین اجزا شرکت‌کننده در مکمل بالاترین فعالیت آنتی‌اکسیدانی به پروتئین‌های هیدرولیز‌شده آب‌پنیر اختصاص داشت. با توجه به نتایج بدست‌آمده مشخص می‌شود که پپتیدهای حاصل از شیر و وانیلین به عنوان یک مکمل موثر در جهت کاهش عوارض بیماری ها و قابل استفاده در محصولات فراسودمند است که مطالعات حیوانی و بالینی تکمیل کننده این تحقیق خواهد بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of antimicrobial and antioxidant effects of dietary supplements prepared with hydrolysed proteins of milk and vanillin

نویسندگان English

Mehdi Amouheydari 1
Mohammad Reza Ehsani 2
Iraj Javadi 3
1 Islamic Azad University, Science and Research Branch, Tehran
2 Food Science and Technology Department, Islamic Azad University, Science and Research Branch
3 Toxicology Depatment, Islamic Azad University, Shahrezah Branch
چکیده English

Nowadays, due to the spread of diseases and their complications as well as the high cost of treatment, the use of functional and healthy foods has been considered by the scientist. In this context, more attention is paid to complications such as infection and disease development due to the spread of free radicals. One of the options currently considered in the prevention, treatment and reduction of disease complications is biologically active peptides extracted from plant and animal sources. In the present study, peptides derived from milk hydrolysis, including peptides derived from whey and lactoferrin combined with vanillin flavors, were investigated in the laboratory to reduce infection and increase the potency of the antioxidant system. Antimicrobial tests against Staphylococcus aureus and Escherichia coli were performed after the preparation of milk hydrolyzed proteins and food supplementation with vanillin flavoring. The antioxidant effects of these peptides individually and along with a mixture of also tested. The results showed that the peptides derived from lactoferrin and whey protein concentrate alone and in combination, had antimicrobial effects at concentrations of 2000, 4000 and 1000 μg / ml, respectively. Also, the results of antioxidant tests in DPPH, ABTS and Reducting power system showed the appropriate ability of these components at 400 mg / ml concentration and the highest antioxidant activity was related to the hydrolyzed whey protein among the components participating in the supplement. Based on the results, it can be concluded that milk-derived peptides with vanillin can be used as an effective supplement to reduce the therapeutic effects in diseases, which will be complemented by animal and clinical studies.

کلیدواژه‌ها English

Lactoferrin
whey protein concentrate
Antioxidant
Antimicrobial
[1] Goetzke, B., Nitzko, S., & Spiller, A. (2014). Consumption of organic and functional food. A matter of well-being and health?. Appetite, 77, 96-105.
[2] Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative medicine and cellular longevity, 2016.
[3] Gomes, B., Augusto, M. T., Felício, M. R., Hollmann, A., Franco, O. L., Gonçalves, S., & Santos, N. C. (2018). Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology advances, 36(2), 415-429.
[4] Schlesinger, A., Paul, M., Gafter-Gvili, A., Rubinovitch, B., & Leibovici, L. (2009). Infection-control interventions for cancer patients after chemotherapy: a systematic review and meta-analysis. The Lancet Infectious Diseases, 9(2), 97-107.
[5] Konovalova, M. V., Zubareva, A. A., Lutsenko, G. V., & Svirshchevskaya, E. V. (2018). Antimicrobial peptides in health and disease. Applied Biochemistry and Microbiology, 54(3), 238-244.
[6] Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods, 1(2), 177-187.
[7] Muro Urista, C., Álvarez Fernández, R., Riera Rodriguez, F., Arana Cuenca, A., & Tellez Jurado, A. (2011). Production and functionality of active peptides from milk. Food Science and Technology International, 17(4), 293-317.
[8] García-Montoya, I. A., Cendón, T. S., Arévalo-Gallegos, S., & Rascón-Cruz, Q. (2012). Lactoferrin a multiple bioactive protein: an overview. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(3), 226-236.
[9] Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., ... & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 21(6), 752.
[10] Giansanti, F., Panella, G., Arienzo, A., Leboffe, L., & Antonini, G. (2018). Nutraceutical peptides from lactoferrin. J. Adv. Dairy Res, 6(1), 199.
[11] Patel, S. (2015). Functional food relevance of whey protein: A review of recent findings and scopes ahead. Journal of Functional Foods, 19, 308-319.
[12] Aarabi, A., Mizani, M., & Honarvar, M. (2017). The use of sugar beet pulp lignin for the production of vanillin. International journal of biological macromolecules, 94, 345-354.
[13] Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., & Kawase, K. (1991). Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. Journal of dairy science, 74(12), 4137-4142.
[14] Dryáková, A., Pihlanto, A., Marnila, P., Čurda, L., & Korhonen, H. J. (2010). Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology, 230(6), 865-874.
[15] Expósito, I. L., & Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. International Dairy Journal, 16(11), 1294-1305.
[16] Hickey, R. M., Twomey, D. P., Ross, R. P., & Hill, C. (2003). Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology, 149(3), 655-664.
[17] Power-Grant, O., Bruen, C., Brennan, L., Giblin, L., Jakeman, P., & FitzGerald, R. J. (2015). In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis. Food & Function, 6(3), 972-980.
[18] Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237.
[19] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), 1198-1205.
[20] Harouna, S., Carraminana, J. J., Navarro, F., Pérez, M. D., Calvo, M., & Sánchez, L. (2015). Antibacterial activity of bovine milk lactoferrin on the emerging foodborne pathogen Cronobacter sakazakii: Effect of media and heat treatment. Food control, 47, 520-525.
[21] Bokkhim, H., Tran, T., Bansal, N., Grøndahl, L., & Bhandari, B. (2014). Evaluation of different methods for determination of the iron saturation level in bovine lactoferrin. Food chemistry, 152, 121-127.
[22] Wada, Y., & Lönnerdal, B. (2014). Bioactive peptides derived from human milk proteins—mechanisms of action. The Journal of nutritional biochemistry, 25(5), 503-514.
[23] Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. International journal of peptides, 2013.
[24] Stark, M., Liu, L. P., & Deber, C. M. (2002). Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial agents and chemotherapy, 46(11), 3585-3590.
[25] Purkayasthaa, S. P., Dasb, B., Bhattacharyyac, K. G., & Deb, B. (2014). A new polymeric sodium complex of vanillin: Synthesis, characterisation and antibacterial activity. J. Indian Chem. Soc, 91, 1-6.
[26] Fitzgerald, D. J., Stratford, M., Gasson, M. J., & Narbad, A. (2004). The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. Journal of food protection, 67(2), 391-395.
[27] Salami, M., Yousefi, R., Ehsani, M. R., Razavi, S. H., Chobert, J. M., Haertlé, T., ... & Moosavi-Movahedi, A. A. (2009). Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: Possible significance for use in infant formula. International Dairy Journal, 19(9), 518-523.
[28] Ruiz-Giménez, P., Salom, J. B., Marcos, J. F., Vallés, S., Martínez-Maqueda, D., Recio, I., ... & Manzanares, P. (2012). Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: identification of novel active peptides. Food Chemistry, 131(1), 266-273.
[29] Lawen, A., & Lane, D. J. (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxidants & redox signaling, 18(18), 2473-2507.
[30] Chandra Mohan, K. V. P., Letchoumy, P. V., Hara, Y., & Nagini, S. (2008). Combination chemoprevention of hamster buccal pouch carcinogenesis by bovine milk lactoferrin and black tea polyphenols. Cancer investigation, 26(2), 193-201.
[31] Ramachandra Rao, S., & Ravishankar, G. A. (2000). Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80(3), 289-304.
[32] Tong, L. M., Sasaki, S., McClements, D. J., & Decker, E. A. (2000). Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. Journal of Agricultural and Food Chemistry, 48(5), 1473-1478.
[33] Peña‐Ramos, E. A., Xiong, Y. L., & Arteaga, G. E. (2004). Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. Journal of the Science of Food and Agriculture, 84(14), 1908-1918.
[34] Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(2), 170-177.
[35] Elia, D., Stadler, K., Horváth, V., & Jakus, J. (2006). Effect of soy-and whey protein-isolate supplemented diet on the redox parameters of trained mice. European journal of nutrition, 45(5), 259-266.