[1] Rhim, J.W. (2007). Potential use of biopolymer-based nanocomposite in food packaging applications. Food science and Biotechnology, 16 (5): 691-709.
[2] Shan, G., Surampalli, R.Y., Tyagi, R.D. and Zhang, T.C., (2009). Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control. Frontiers of Chemical Engineering in China, 3 (3): 249-264.
[3] Vergnaud, J.M. (1998). Problems encountered for food safety with polymer packages: chemical exchange, recycling.Advances in Colloid and Interface Science, 78: 267-297.
[4] Wang, G.H. (1992). Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection, 55 (11): 916-919.
[5] Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., and Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67 (3): 1162-1169.
[6] Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J., (1999). Food application of chitin and chitosan. Trends in Food Science and Technology, 10 (2): 37-51.
[7] Chen, L., Du, Y., Tian, Z., Sun, L. (2005). Effect of the degree of deacetylation and the substitution of carboxymethyl chitosan on its aggregation behavior. Journal of Polymer Science Polymer Physics, 43: 296-305.
[8] Muzzarelli, R.A.A. (1988). Carboxymethylated chitins and chitosans. Carbohydrate Polymers, 8: 1-21.
[9] Hong, S.I., Park, J.D. and Kim, D.M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Science and Biotechnology, 9 (1): 38-42.
[10] Ghanbarzadeh, B., Oleyaei, S.A. and Almasi H. (2015). Nano-Structured Materials Utilized in Biopolymer based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55: 1699-1723.
[11] Zolfi, M., Khodaiyan, F., Mousavi, M. and Hashemi, M. (2014). Development and characterization of the kefiran-whey protein isolate-TiO₂ nanocomposite films, International Journal of Biological Macromolecule, 65: 340-345.
[12] Zhou, J.J., Wang, S.Y. and Gunasekaran, S. (2009). Preparation and Characterization of Whey Protein Film Incorporated with TiO2 Nanoparticles. Journal of Food Science, 74 (7): 50-56.
[13] Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G. and Leng, X. (2011(. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25 (6): 1-7.
[14] Zolfi, M., Khodaiyan, F., Mousavi, M., Hashemi, M. (2014). Development and characterization of the kefiran-whey protein isolate-TiO₂ nanocomposite films, International Journal of Biological Macromolecule, 65: 340-345.
[15] Oleyaei, S.A., Ghanbarzadeh, B., Moayedi, A.A., Abbasi, F. (2017). The Effects of TiO2 and Montmorillonite Nanofillers on Structural, Thermal and Optical Properties of Starch based Nanobiocomposite Films. Iranian Food Science and Technology Research Journal, 12 (5): 678-695.
[16] El-Shafei, A.M., Fouda, M.M.G., Knittel, D., Schollmeyer, E. (2008). Antibacterial activity of cationically modified cotton fabric with Carboxymethyl chitosan. Journal of Applied Polymer Science, 110 (3):1289-1296.
[17] Espitia, P.J.P., Soares, N.D.F.F., Teófilo, R.F., dos Reis Coimbra, J.S., Vitor, D.M., Batista, R.A., Medeiros, E.A.A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94 (1), 199-208.
[18] Rhim, J.W., Wang, L.F., Hong, S.I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33 (16): 327-335.
[19] Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of freshorange juice. Innovative Food Science and Emerging Technologies, 11 (4): 742-748.
[20] Seo, J., Jeon, G., Sung Jang, E., Khan, S.B., Han, H. (2011). Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. Applied Polymer Science, 122 (2): 1101-1108.
[21] Zapata, P.A., Tamayo, L., Páez, M., Cerda, E., Azócar, I., Rabagliatil, F.B. (2011). Nanocomposites based on polyethylene and nanosilver particlesproduced by metallocenic ‘‘in situ’’ polymerization: synthesis, characterization, and antimicrobial behavior. European Polymer Journal, 47 (8): 1541-1549.
[22] Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L., Li, X.L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 160 (1): 378-382.
[23] Yin, M., Li, C., Guan, G., Yuan, X., Zhang, D., Xiao, Y., (2009). In-Situ Synthesis of Poly (Ethylene Terephthalate) /Clay Nanocomposites Using TiO2/SiO2 Sol-Intercalated Montmorillonite as Polycondensation Catalyst. Polymer Engineering and science, 49 (8):1562-1572.
[24] Qu, L., Huang, G., Zhang, P., Nie, Y., Weng, G. (2009). Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 59: 1397-1402.
[25] Oleyaei, S.A., Ghanbarzadeh, B., Moayedi, A.A., Poursani, P., Moosavi bayeghi. S.F., Bakhsh Amin. M.R. (2018). Evaluation of Applicable Properties of Nanocomposite Starch Films Contains montmorillonite and titanium dioxid. Iranian Food Science and Technology Research Journal, 13 (4): 611-626.
[26] Deka, B.K., Maji, T.K. (2011). Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing, 42 (12): 2117-2125.
[27] Gholami, R., Ghanbarzadeh, B., Dehghannia, J. (2013). Potato Starch/Montmorillonite-Based Nanocomposites: Water Sensitivity, Mechanical and Thermal Properties and XRD Profile Study. Iranian Journal of Polymer Science and Technology, 26 (2): 91-100.
[28] Rooney, M.L. (1995). Active food packaging. Australia: Blackie Academic & Professional.
[29] Peyghambardoust, S.H., Dehghani, S., Peyghambardoust, S.J. (2015). Preparation and analysis of physical properties, Mechanical and antimicrobial Lightweight polyethylene nano-composite films containing silver nanoparticles, zinc oxide and copper oxide. Iran Biosystem Engineering, 46 (4): 347-354.
[30] Poornasir, N., Peyghambardoust, S.J., Peygambardoust, S.H. (2016). Study of physical, mechanical and antibacterial properties of nanobio-composite films based on starch containing silver metal oxide, oxide and copper oxide nanoparticles. Quarterly Journal of Modern Food Technology, 4 (14): 17-32.
[31] Wang, X., Du, Y., Yang, J., Tang, Y., Luo, J. (2008). Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. Journal of biomedical materials research, 84 (2): 384-390.
[32] Rhim, J.W., Wang, L.F. (2014). Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, 97-98:174-181.
[33] An, J., Luo, Q., Yuan, X., Wang, D., Li, X. (2011). Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. Journal of Applied Polymer Science, 120 (6): 3180-3189.
[34] Tunc, S., Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/ montmorillonite nanocomposite films. Applied Clay Science, 48 (3): 414-424.
[35] Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32 (2), 416-424.
[36] Pereda, M., Amica, G., Rácz, I., Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103 (1): 76-83.
[37] Marvizadeh, M. M., Nafchi, A. M., Jokar, M. (2014). Improved physicochemical properties of Tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. Journal of Chemical Health Risks, 4 (4): 25-31.
[38] Malathi, A.N., Singh, A.K. (2019). Antimicrobial activity of rice starch based film reinforced with titanium dioxide (TiO2) nanoparticles. Agriculture Research Journal, 56(1):111-117.
[39] Hejri, Z., Seifkordi, A.A., Ahmadpour, A., Zebarjad, S.M., Maskooko, A.M. (2013). Biodegradable starch/poly (vinyl alcohol)/film reinforced with titanium dioxide nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 20:1001-1011.
[40] Li, X., Xing, Y., Jiang, Y., Ding, Y., Li, W. (2009). Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Food Science and Technology, 44 (11): 2161-2168.
[41] Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R., Talib R. A. (2014). Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications. International Journal of Photoenergy, Article ID 945930, 6 pages.
[42] Pirsa, S., Farshchi, E., Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on Carboxymethyl Cellulose/Gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28:3154-3163.