سنتز و بررسی خصوصیات فیزیکوشیمیایی و ضدمیکروبی بیونانوکامپوزیت‌های بر پایه بیوپلیمر کربوکسی‌متیل‌کیتوسان-نانورس مونتموریلونیت در حضور نانوذرات اکسیدتیتانیم

نویسندگان
دانشگاه آزاد اسلامی واحد مراغه
چکیده
در این پژوهش، بیونانوکامپوزیت ضدمیکروبی بر پایه بیوپلیمر کربوکسی متیل کیتوسان-نانورس مونت‌موریلونیت در حضور نانوذرات اکسید تیتانیم سنتز شد. بررسی تصاویر مورفولوژی سطح شکست با میکروسکوپ الکترونی روبشی (SEM) نشان دهنده سطح زبر و ناهمگن بیونانوکامپوزیت‌ها در مقایسه با کربوکسی متیل‌کیتوسان خالص می‌باشد. نتایج آزمون پراش پرتو X نشان داد که نحوه پخش نانورس در حضور نانوذرات اکسید تیتانیم از ورقه‌ای کامل به ورقه‌ای بین‌لایه‌ای تغییر نموده است. افزودن نانوذرات اکسید تیتانیم باعث افزایش معنی‌داری (05/0) کدورت در نانوکامپوزیتها شد. تأثیر نانوذره اکسید تیتانیم بر کاهش مقدار باکتری گرم مثبت استافیلوکوکوس اورئوس بیش ازمقدار باکتری گرم منفی اشرشیاکلی است و با افزایش درصد نانوذره اکسید تیتانیم کارائی آن در حذف کلونی‌های هر دو باکتری بیشتر می‌شود. میزان انحلالپذیری در آب و نفوذپذیری نسبت یه بخاردر فیلمهای بیونانوکامپوزیتی با افزایش درصد وزنی نانوذرات اکسیدتیتانیم کاهش بیشتری یافت. استحکام کششی فیلم‌های حاوی نانوذرات اکسیدتیتانیم بیشتر از استحکام کششی فیلم کربوکسی متیل کیتوسان خالص می‌باشد که از نظر آماری معنی‌دار است (05/0). این تحقیق پتانسیل بالای بیونانو کامپوزیت را در جلوگیری از رشد باکتری‌های بیماری‌زا به اثبات رساند و نشان داد که می‌توان از چنین بسته‌بندی‌هایی برای افزایش عمر نگهداری مواد‌غذایی سود برد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Synthesis and Evaluation of Physicochemical and Antimicrobial Properties of Bionanocomposites Based on Carboxymethylchitosan Biopolymer - Montmorillonite Nanoclay in the Presence of TiO₂ Nanoparticles

نویسندگان English

Hossein Anvar
Hossein sheikhloie
Islamic Azad University, Maragheh branch
چکیده English

In this research, an antimicrobial bionanocomposites based on carboxymethyl chitosan biopolymer-montmorillonite nanoclay was synthesized in the presence of titanium oxide nanoparticles. Investigation of surface morphology images with scanning electron microscopy (SEM) shows the rough and heterogeneous surface of nanocomposites in comparison with pure carboxymethyl chitosan. The results of the XRD test showed that the diffusion of nanoclay in the presence of TiO2 nanoparticles changed from full sheets to between layers sheets. The addition of TiO2 nanoparticles caused a significant increase (p˂0.05) in turbidity in nanocomposites. The effect of TiO2 nanoparticles on reducing the amount of Gram-positive bacteria of Staphylococcus aureus is more than the effect of TiO2 nanoparticles on reducing the amount of gram-negative bacteria of Escherichia coli. By increasing the percentage of TiO2 nanoparticles, its efficacy in removing colonies of both bacteria is increased. Water solubility and Vapor permeability of nanobiocomposite films decreased with increasing weight percentage of TiO2. The tensile strength of the film containing TiO2 nanoparticles is more than the tensile strength of neat carboxymethyl chitosan film, which is statistically significant (p˂0.05). The study demonstrated the high potential of bionanocomposites in preventing the growth of pathogenic bacteria and showed that such packages could be used to increase the shelf-life of food.

کلیدواژه‌ها English

Active films
Carboxymethyl Chitosan
Montmorillonite
Titanium dioxide
Antimicrobial properties
[1] Rhim, J.W. (2007). Potential use of biopolymer-based nanocomposite in food packaging applications. Food science and Biotechnology, 16 (5): 691-709.
[2] Shan, G., Surampalli, R.Y., Tyagi, R.D. and Zhang, T.C., (2009). Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control. Frontiers of Chemical Engineering in China, 3 (3): 249-264.
[3] Vergnaud, J.M. (1998). Problems encountered for food safety with polymer packages: chemical exchange, recycling.Advances in Colloid and Interface Science, 78: 267-297.
[4] Wang, G.H. (1992). Inhibition and inactivation of five species of foodborne pathogens by chitosan. Journal of Food Protection, 55 (11): 916-919.
[5] Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., and Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67 (3): 1162-1169.
[6] Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J., (1999). Food application of chitin and chitosan. Trends in Food Science and Technology, 10 (2): 37-51.
[7] Chen, L., Du, Y., Tian, Z., Sun, L. (2005). Effect of the degree of deacetylation and the substitution of carboxymethyl chitosan on its aggregation behavior. Journal of Polymer Science Polymer Physics, 43: 296-305.
[8] Muzzarelli, R.A.A. (1988). Carboxymethylated chitins and chitosans. Carbohydrate Polymers, 8: 1-21.
[9] Hong, S.I., Park, J.D. and Kim, D.M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Science and Biotechnology, 9 (1): 38-42.
[10] Ghanbarzadeh, B., Oleyaei, S.A. and Almasi H. (2015). Nano-Structured Materials Utilized in Biopolymer based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55: 1699-1723.
[11] Zolfi, M., Khodaiyan, F., Mousavi, M. and Hashemi, M. (2014). Development and characterization of the kefiran-whey protein isolate-TiO₂ nanocomposite films, International Journal of Biological Macromolecule, 65: 340-345.
[12] Zhou, J.J., Wang, S.Y. and Gunasekaran, S. (2009). Preparation and Characterization of Whey Protein Film Incorporated with TiO2 Nanoparticles. Journal of Food Science, 74 (7): 50-56.
[13] Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G. and Leng, X. (2011(. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25 (6): 1-7.
[14] Zolfi, M., Khodaiyan, F., Mousavi, M., Hashemi, M. (2014). Development and characterization of the kefiran-whey protein isolate-TiO₂ nanocomposite films, International Journal of Biological Macromolecule, 65: 340-345.
[15] Oleyaei, S.A., Ghanbarzadeh, B., Moayedi, A.A., Abbasi, F. (2017). The Effects of TiO2 and Montmorillonite Nanofillers on Structural, Thermal and Optical Properties of Starch based Nanobiocomposite Films. Iranian Food Science and Technology Research Journal, 12 (5): 678-695.
[16] El-Shafei, A.M., Fouda, M.M.G., Knittel, D., Schollmeyer, E. (2008). Antibacterial activity of cationically modified cotton fabric with Carboxymethyl chitosan. Journal of Applied Polymer Science, 110 (3):1289-1296.
[17] Espitia, P.J.P., Soares, N.D.F.F., Teófilo, R.F., dos Reis Coimbra, J.S., Vitor, D.M., Batista, R.A., Medeiros, E.A.A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94 (1), 199-208.
[18] Rhim, J.W., Wang, L.F., Hong, S.I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33 (16): 327-335.
[19] Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of freshorange juice. Innovative Food Science and Emerging Technologies, 11 (4): 742-748.
[20] Seo, J., Jeon, G., Sung Jang, E., Khan, S.B., Han, H. (2011). Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. Applied Polymer Science, 122 (2): 1101-1108.
[21] Zapata, P.A., Tamayo, L., Páez, M., Cerda, E., Azócar, I., Rabagliatil, F.B. (2011). Nanocomposites based on polyethylene and nanosilver particlesproduced by metallocenic ‘‘in situ’’ polymerization: synthesis, characterization, and antimicrobial behavior. European Polymer Journal, 47 (8): 1541-1549.
[22] Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L., Li, X.L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 160 (1): 378-382.
[23] Yin, M., Li, C., Guan, G., Yuan, X., Zhang, D., Xiao, Y., (2009). In-Situ Synthesis of Poly (Ethylene Terephthalate) /Clay Nanocomposites Using TiO2/SiO2 Sol-Intercalated Montmorillonite as Polycondensation Catalyst. Polymer Engineering and science, 49 (8):1562-1572.
[24] Qu, L., Huang, G., Zhang, P., Nie, Y., Weng, G. (2009). Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 59: 1397-1402.
[25] Oleyaei, S.A., Ghanbarzadeh, B., Moayedi, A.A., Poursani, P., Moosavi bayeghi. S.F., Bakhsh Amin. M.R. (2018). Evaluation of Applicable Properties of Nanocomposite Starch Films Contains montmorillonite and titanium dioxid. Iranian Food Science and Technology Research Journal, 13 (4): 611-626.
[26] Deka, B.K., Maji, T.K. (2011). Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing, 42 (12): 2117-2125.
[27] Gholami, R., Ghanbarzadeh, B., Dehghannia, J. (2013). Potato Starch/Montmorillonite-Based Nanocomposites: Water Sensitivity, Mechanical and Thermal Properties and XRD Profile Study. Iranian Journal of Polymer Science and Technology, 26 (2): 91-100.
[28] Rooney, M.L. (1995). Active food packaging. Australia: Blackie Academic & Professional.
[29] Peyghambardoust, S.H., Dehghani, S., Peyghambardoust, S.J. (2015). Preparation and analysis of physical properties, Mechanical and antimicrobial Lightweight polyethylene nano-composite films containing silver nanoparticles, zinc oxide and copper oxide. Iran Biosystem Engineering, 46 (4): 347-354.
[30] Poornasir, N., Peyghambardoust, S.J., Peygambardoust, S.H. (2016). Study of physical, mechanical and antibacterial properties of nanobio-composite films based on starch containing silver metal oxide, oxide and copper oxide nanoparticles. Quarterly Journal of Modern Food Technology, 4 (14): 17-32.
[31] Wang, X., Du, Y., Yang, J., Tang, Y., Luo, J. (2008). Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. Journal of biomedical materials research, 84 (2): 384-390.
[32] Rhim, J.W., Wang, L.F. (2014). Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, 97-98:174-181.
[33] An, J., Luo, Q., Yuan, X., Wang, D., Li, X. (2011). Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. Journal of Applied Polymer Science, 120 (6): 3180-3189.
[34] Tunc, S., Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/ montmorillonite nanocomposite films. Applied Clay Science, 48 (3): 414-424.
[35] Abdollahi, M., Alboofetileh, M., Rezaei, M., Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32 (2), 416-424.
[36] Pereda, M., Amica, G., Rácz, I., Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103 (1): 76-83.
[37] Marvizadeh, M. M., Nafchi, A. M., Jokar, M. (2014). Improved physicochemical properties of Tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. Journal of Chemical Health Risks, 4 (4): 25-31.
[38] Malathi, A.N., Singh, A.K. (2019). Antimicrobial activity of rice starch based film reinforced with titanium dioxide (TiO2) nanoparticles. Agriculture Research Journal, 56(1):111-117.
[39] Hejri, Z., Seifkordi, A.A., Ahmadpour, A., Zebarjad, S.M., Maskooko, A.M. (2013). Biodegradable starch/poly (vinyl alcohol)/film reinforced with titanium dioxide nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 20:1001-1011.
[40] Li, X., Xing, Y., Jiang, Y., Ding, Y., Li, W. (2009). Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Food Science and Technology, 44 (11): 2161-2168.
[41] Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R., Talib R. A. (2014). Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications. International Journal of Photoenergy, Article ID 945930, 6 pages.
[42] Pirsa, S., Farshchi, E., Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on Carboxymethyl Cellulose/Gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28:3154-3163.