مدلسازی انتقال جرم و حرارت در فرایند سرخ کردن عمیق و ارزیابی آن در مدل غذایی سیب‌زمینی

نویسندگان
1 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
چکیده
در پژوهش حاضر، ﻧﺤﻮه ﺗﻐﯿﯿﺮات ﺿﺮیﺐ اﻧﺘﻘﺎل ﺣﺮارت ﺟﺎﺑﺠﺎیﯽ روغن طی ﻓﺮآیﻨﺪ ﺳﺮخﮐـﺮدن عمیق ﻣﻮرد ﺑﺮرﺳﯽ ﻗﺮار ﮔﺮﻓﺖ. ﺑﺮای ایﻦ ﻣﻨﻈﻮر، با ثابت نگه­داشتن دمای روغن به عنوان محیط انتقال دهنده حرارت، تغییرات دمایی سیب­زمینی مکعبی شکل، در مرکز و دو کناره راست و چپ خلال در طول­ سرخ­کردن با ترموکوپل سه­کاناله اندازه­گیری شد. دمای ﻋﻤﻠﯿﺎتی ﺳﺮخﮐﺮدن 150 ، 160 وC°170 در­نظر گرفته شد. دمای ترموکوپل­ها در فواصل زمانی 10 ثانیه به­ وسیله­ی­ دیتالاگر ثبت گردید. به علت عدم وجود ﺗﻐﯿﯿﺮات معنی­دار در دمای مکانهای مختلف انتخابی برروی خلال، دمای مرکز در طول فرایند سرخ­شدن به عنوان دمای موثر انتخاب گردید. همچنین پارامتر انتقال­حرارت شامل ضریب جابجایی روغن در بازه 128_515 W/m2.K محاسبه و تعیین شد. ﻧﺘﺎیﺞ ﻧﺸﺎن داد، ﺿﺮیﺐ اﻧﺘﻘﺎل ﺣﺮارت جابجایی در دﻣﺎﻫﺎی ﺑﺎﻻ ﺑﻪ دﻟﯿﻞ افزایش ﻧﺮخ ﺧﺮوج رﻃﻮﺑﺖ و ایجاد تلاطم در روغن بالاتر است. با افزایش دمای روغن، کاهش محتوی روغن و کاهش محتوی رطوبت خلال­ها مشاهده گردید. پارامترهای انتقال­جرم شامل ضریب نفوذ موثر رطوبت () در محدوده 9.12×10-9 _1.31×10-8 m2/s و ضریب جذب روغن () در محدوده 1.26×10-5_1.52×10-5 m2/s محاسبه و تعیین شد. سپس با استفاده از ضرایب محاسبه شده، مدل­سازی انتقال­حرارت و جرم توسط معادلات ریاضی انجام گرفت و معادلات مربوطه با روش جداسازی متغیرها حل شد. در پایان شبیه سازی با نرم­افزار کامسول نسخه 5.3a انجام گرفت و پروفایل­های بدست آمده نیز ارائه گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling of mass and heat transfer in deep fat frying processes and evaluation in potato model food system

نویسندگان English

Azer Naghavi Gargari 1
Narmela Asefi 2
Leila Roufegarinejad 2
1 Ph.D. Student, Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 Associate Prof. Dr., Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
چکیده English

In the present study, a convective heat transfer coefficientchanges during deep fat frying was investigated. So, by keeping the oil temperature constant as a heat transfer medium, temperature changes in a potato strip (cube-shaped), in the center and left-right sides of the strip during frying by a three-channel thermocouple was measured. Processing temperature of oil was 150, 160 and 170°C. The strip temperature was recorded by a data logger at ten-second intervals. Due to no significant changes in the temperature of different selected locations in potato strip, the center temperature was selected and recorded as an effective temperature. Also, heat transfer parameter included convective coefficient () was calculated in the range of 128_515 W/m2.K .Result showed that is high in high levels temperature because of increasing rate of moisture exiting and turbulence in the oil. Also, with increasing oil temperature, decreasing of oil content and decreasing in moisture content of slices were observed. The mass transfer parameters including the effective moisture diffusivity () and the oil diffusivity () were calculated in the range of 9.12×10-9 _1.31×10-8 m2/s and 1.26×10-5_1.52×10-5 m2/s , respectively. By using the calculated coefficients, heat and mass transfer modeling, was done by mathematical equations and the relevant equations were solved by the method of separation variables. Simulation was also done with COMSOL Multiphysics version 5.3a and the resulted profiles were also presented.

کلیدواژه‌ها English

simulation
Convective heat transfer coefficient
mathematical modeling
Comsol Multiphysics
[1]. Ghaderi, A., Dehghannya, J., & Ghanbarzadeh, B. (2018). Momentum, heat and mass transfer enhancement during deep-fat frying process of potato strips: Influence of convective oil temperature. International Journal of Thermal Sciences, 134, 485–499. https://doi.org/10.1016/j.ijthermalsci.2018.08.035
[2]. Safari, A., Salamat, R., & Baik, O. D. (2018). A review on heat and mass transfer coefficients during deep-fat frying: Determination methods and influencing factors. Journal of Food Engineering, Vol. 230, pp. 114–123. https://doi.org/10.1016/j.jfoodeng.2018.01.022
[3]. Naghavi, E. A., Dehghannya, J., & Ghanbarzadeh, B. (2018). 3D computational simulation for the prediction of coupled momentum, heat and mass transfer during deep fat frying of potato strips coated with different concentrations of alginate. Journal of Food Engineering, 235, 64–78. https://doi.org/10.1016/j.jfoodeng.2018.04.026
[4]. Alvis, A., Vélez, C., Rada-Mendoza, M., Villamiel, M., & Villada, H. S. (2009). Heat transfer coefficient during deep-fat frying. Food Control, 20, 321–325. https://doi.org/10.1016/j.foodcont.2008.05.016
[5]. Loon, W. Van. (2005). Process innovation and quality aspects of French fries Wil van Loon. PhD thesis Wageningen University, The Netherlands, 2005 – with summary in Dutch.
[6].Pedreschi, F., Hernandez, P., Figueroa, C., & Moyano, P. (2005). Modeling water loss during frying of potato slices. International Journal of Food Properties, 8, 289–299. https://doi.org/10.1081/JFP-200059480
[7]. Debnath, S., Rastogi, N. K., Krishna, A. G. G., & Lokesh, B. R. (2009). Oil partitioning between surface and structure of deep-fat fried potato slices: A kinetic study. LWT - Food Science and Technology, 42(6), 1054–1058. https://doi.org/10.1016/j.lwt.2009.01.006
[8].Troncoso, E., & Pedreschi, F. (2009). Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT - Food Science and Technology,42(6),1164_1173. https://doi.org/10.1016/j.lwt.2009.01.008
[9].Gupta, P., Shivhare, U. S., & Bawa, A. S. (2000). Studies on frying kinetics and quality of french fries. Drying Technology, 18(1–2), 311–321. https://doi.org/10.1080/07373930008917706
[10].Krokida, M. K., Oreopoulou, V., & Maroulis, Z. B. (2000). Water loss and oil uptake as a function of frying time. Journal of Food Engineering, 44(1), 39–46. https://doi.org/10.1016/S0260-8774(99)00163-6
[11].Wu, H., Karayiannis, T. G., & Tassou, S. A. (2013). A two-dimensional frying model for the investigation and optimisation of continuous industrial frying systems. Applied Thermal Engineering, 51(1–2), 926–936. https://doi.org/10.1016/j.applthermaleng.2012.10.002
[12]. Farid, M., & Kizilel, R. (2009). A new approach to the analysis of heat and mass transfer in drying and frying of food products. Chemical Engineering and Processing: Process Intensification, 48(1), 217–223. https://doi.org/10.1016/j.cep.2008.03.013
[13]. Halder, A. Dhall, A & Datta, A.K, (2007). An improved, easily implementable, porous media based model for deep-fat frying, Part II: results, validation and sensitivity analysis, Trans IChemE, Part C, Food and Bioproducts Processing 85 (C3), 220-230.
[14].Bouchon, D.L. Pyle, (2005). Modeling oil absorption during post-frying cooling: II: solution of the mathematical model, model testing and simulations, Food and Bioproducts Processing 83, 261‌‌_272. https://doi.org/10.1205/fbp.05114
[15].Chen, R.G. Moreira, Modeling of a batch deep-fat frying process for tortilla chips, (1997).Transactions of Ischemia, Part C: Food and Bio products Processing 75 (C3) 181_190
[16].Chemists, A. of O. A. (1995). Official methods of analysis of AOAC International. Association of Official Analysis Chemists International, p. CD-ROM. https://doi.org/10.3109/15563657608988149
[17].Crank, J. (1975). The mathematics of diffusion. 2nd Edn. Physics Bulletin, 7(10).
https://doi.org/10.1088/0031-9112/7/10/004
[18]. Treybal, R. E. (1980). Mass transfer operations. New York, 466.
[19]. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2006). Transport Phenomena, Revised 2nd Edition. John Wiley & Sons, Inc., 780. https://doi.org/10.1002/aic.690070245
[20]. Incropera P. Frank , David P. DeWitt, Theodore L. Bergman and Adrienne S. Lavine,2006, Introduction to Heat Transfer. Wiley;
[21]. Kreyszig, E. (2009). Advanced Engineering Mathematics, 10th Eddition. john wiley & sons.
[22]. Adedeji, A.A. , Ngadi, M.O. & Raghavan G.S.V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets, Journal of Food Engineering, 91(1), 146–153 https://doi.org/10.1016/j.jfoodeng.2008.08.018
[23]. Motevali, A., Abbaszadeh, A., Minaei, S., Khoshtaghaza, M. H., & Ghobadian, B. (2012). Effective Moisture diffusivity, activation energy and energy consumption in thin-layer drying of jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology, 14(3), 523–532.
[24]. Robert, H. P., Don, W. G., & James, O. M. (1984). Perry’s chemical engineers’ handbook. Nova Iorque.
[25]. Farid, M. M., & Chen, X. D. (1998). The analysis of heat and mass transfer during frying of food using a moving boundary solution procedure. Heat and Mass Transfer, 34(1), 69–77.
https://doi.org/10.1007/s002310050233
[26]. Lioumbas, J. S., Kostoglou, M., & Karapantsios, T. D. (2012). On the capacity of a crust-core model to describe potato deep-fat frying. Food Research International, 46(1), 185–193. https://doi.org/10.1016/j.foodres.2011.12.012
[27]. Ziaiifar, A. M., Courtois, F., & Trystram, G. (2010). Porosity development and its effect on oil uptake during frying process. Journal of Food Process Engineering, 33(2), 191–212. https://doi.org/10.1111/j.1745-4530.2008.00267.x
[28].Diaz, A., Trystram, G., Vitrac, O., Dufour, D., & Raoult-Wack, A. L. (1999). Kinetics of moisture loss and fat absorption during frying for different varieties of plantain. Journal of the Science of Food and Agriculture, 79(2), 291–299. https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<291::AID-JSFA194>3.0.CO;2-I
[29].McMinn, W. A. M., & Magee, T. R. A. (1996). Air drying kinetics of potato cylinders. Drying Technology, 14(9), 2025–2040. https://doi.org/10.1080/07373939608917194
[30]. Yildiz, A., Koray Palazoǧlu, T., & Erdoǧdu, F. (2007). Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79(1), 11–17. https://doi.org/10.1016/j.jfoodeng.2006.01.021
[31]. Granda, C., & Moreira, R. G. (2005). Kinetics of acrylamide formation during traditional and vacuum frying of potato chips. Journal of Food Process Engineering, 28(5), 478–493. https://doi.org/10.1111/j.1745-4530.2005.034.x
[32]. Alipour, M., Kashaninejad, M., Maghsoudlou, Y., & Jafari, M. (2009). Effects of carrageenan, oil temperature and time of frying on oil uptake of fried potato products. Iranian Food Science and Technology Research Journal 5(1): 21-27 (In Farsi).
[33].Yıldız, A., Palazoglu, T.K. & Erdogdu, F.,( 2007). Determination of heat and mass transfer parameters during frying of potato slices. Joutnal of Food Engineering. 79 (1), 11_17.
[34].Mosavian, M.T.H., Karizaki, V.M., 2012. Determination of mass transfer parameters during deep fat frying of rice crackers. Rice Science. 19 (1), 64‌_69. doi: 10.1016/j.jfoodeng.2018.01.022
[35]. Sahin, S., Sastry, S. K., & Bayindirli, L. (1999). Determination of convective heat transfer coefficient during frying. Journal of Food Engineering, 39(3), 307–311. https://doi.org/10.1016/S0260-8774(98)00171-X
[36].Miller, K. S., Singh, R. P., & Farkas, B. E. (1994). VIiscosity and heat transfer coefficient s for canola,corn,palm and soybean oil. Journal of Food Processing and Preservation, 18(6), 461–472. https://doi.org/10.1111/j.1745-4549.1994.tb00268.x
[37].Moreira, R. G., Palau J., Sweat, V. E., & Sun, X. (1995). Thermal and Physical properties of tortilla chips as a function of frying time.. Journal of Food Processing and Preservation, 19(3), 175–189. https://doi.org/10.1111/j.1745-4549.1995.tb00287.x
[38].Hubbard, L. J., & Farkas, B. E. (1999). Method for determining the convective heat transfer coefficient during immersion frying. Journal of Food Process Engineering, 22(3), 201–214. https://doi.org/10.1111/j.1745-4530.1999.tb00481.x
[39].Costa, R. M., Oliveira, F. A. R., Delaney, O., & Gekas, V. (1999). Analysis of the heat transfer coefficient during potato frying. Journal of Food Engineering, 39(3), 293–299. https://doi.org/10.1016/S0260-8774(98)00169-1
[40]. Farinu, A., Baik, O. D., (2007). Convective mass transfer coefficients in finite element simulations of deep fat frying of sweetpotato. Journal Food Engineering. 89 (2), 187-194. https://doi.org/10.1016/j.foodres.2007.05.006