تأثیر لامیناسیون و تشکیل کمپلکس با بتاسیکلودکسترین بر خصوصیات فیزیکوشیمیایی، آنتی اکسیدانی و رهایش فیلم سلولز باکتریایی حاوی اسانس رزماری

نویسندگان
1 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
2 واحد تحقیق و توسعه گروه صنایع غذایی شیرین عسل، تبریز
3 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد تبریز
چکیده
در این مطالعه، فیلم فعال آنتی اکسیدانی برپایه سلولز باکتریایی حاوی 5 درصد وزنی اسانس رزماری تهیه شد. تأثیر لامیناسیون (تولید فیلم چندلایه) و افزودن بتاسیکلودکسترین (β-CD) (بعنوان ترکیب تشکیل دهندۀ کمپلکس) بر روی خواص فیزیکوشیمیایی، آنتی اکسیدانی و رهایش فیلم فعال مورد مطالعه قرار گرفت. نتایج آزمون پراش اشعه X نشان داد که اسانس رزماری باعث کاهش درجه بلورینگی فیلم سلولز باکتریایی می‌شود. طبق نتایج آزمون‌های فیزیکی افزودن 5 درصد اسانس رزماری باعث افزایش نفوذپذیری نسبت به بخار آب و کاهش استحکام مکانیکی شد و استفاده از β-CD و همچنین تولید فیلم سه لایه، اثرات منفی اسانس بر روی خواص فیلم را کاهش داد و تأثیر لامیناسیون در این زمینه بیشتر از β-CD بود. اسانس رزماری اثر معنی‌دار بر روی خواص رنگی فیلم داشت و باعث افزایش اندیس b و کاهش اندیس L شد. فیلم حاوی اسانس آزاد خاصیت آنتی اکسیدانی خوبی داشت (7/68 درصد) اما پس از لامیناسیون و تشکیل کمپلکس با β-CD این خاصیت کمتر شد. β-CD و لامیناسیون نرخ رهایش اسانس رزماری از بستر فیلم سلولز باکتریایی را کاهش دادند و تأثیر لامیناسیون بیشتر از β-CD بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of lamination and complex formation with β-cyclodextrin on physicochemical, antioxidant and release properties of bacterial cellulose film containing rosemary essential oil

نویسندگان English

Hadi Almasi 1
Behboud Pourfathi 2
Monireh Pourali 3
1 Department of Food Science, Urmia University
2 R & D, Shirin Asal Food Industry Co
3 Department of Food Science, Islamic Azad University, Tabriz, Iran
چکیده English

In this study, bacterial cellulose based antioxidant films containing 5%wt of rosemary essential oil (REO) were prepared. The effect of lamination (production of multilayer film) and beta-cyclodextrin (β-CD) (as complex agent) on the physicochemical, antioxidant and release properties of the active films was studied. X-ray diffraction analysis revealed that the REO was able to decrease the crystallinity of bacterial cellulose film. Results of physical tests revealed that the addition of 5% REO caused to increase of water vapor permeability and decrease of mechanical stiffness and using of β-CD and lamination diminished these negative effects of REO and effect of lamination was more than β-CD. REO had a significant effect on color properties and caused to increase b values and decrease L values. REO loaded film had good antioxidant activity (68.7%) but this property decreased after lamination and β-CD complexion. The β-CD and lamination decreased the migration rate of REO from matrix of bacterial cellulose films and the effect of lamination was more than β-CD.

کلیدواژه‌ها English

Rosemary essential oil
Active packaging
Three-layer film
Mechanical properties
controller release
[1] Stroescu, M., Stoica-Guzun, A., & Jipa. L. M. 2012.Vanillin release from poly (vinylalcohol)-bacterial cellulose mono and multilayer films. Food Engineering, 114, 153-157.
[2] Stoica-Guzun, A., Stroescu, M., Jinga, S., Jipa, I., Dobre, T., & Dobre, L. (2012).Ultrasound influence upon calcium carbonate precipitation on bacterialcellulose membranes. Ultrasonics Sonochemistry, 19, 909–915.
[3] Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M., Pirouzifard, M., (2017). Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. Extract. Carbohydrate Polymers, 156, 340–350.
[4] Wei, B., Yang, G., & Hong, F. 2011. Preppration and evaluation of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 84, 533-538.
[5] Labuza, T.P. and Breene, W.M. 1988. Applications of Active Packaging for Improvement of Shelf-life and Nutritional Quality of Fresh and Extended Shelf-life Foods. Journal of Food Processing and Preservation, 13:1-69.
[6] Hutton, T. (2003). Food packaging: An introduction. Key topics in food science and technology-Number 7. Chipping Campden, Gloucestershire, U.K: Campden and Chorleywood Food Research Association Group (p. 108).
[7] De Kruijf, N., Van Beest, M., Rijk, R., Sipila, T., Paseiro, L., and De Meulanaer, B. 2002. Active and intelligent packaging: applications and regulatory aspects. Food Additives and Contaminants. 19144–162.
[8] Belitz, H., Grosch, W. and Schieberle, p. 2009. Food Chemistry. 4th revised and extended ed., Springer-Verlag Berlin Heidelberg.
[9] Vermeiren, L., Devlieghere, F., Van Beest, M., Kruijf,N., and Debevere, J. 1999. Developments in the active packaging of foods. Food Science & Technology. 10: 77-86.
[10] Peter, D., Nichols, B. D., Mooney and Elliott N. G. 2001. Unusually high levels of non-saponifiable lipids in the fish escolar and rudderfish Identification by gas and thin-layer chromatography. Journal of Chromatography A, 936: 183–191.
[11] Abdollahi, M., Rezaei, M., Farzi, G., (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111, 343-350.
[12] Alizadeh-Sani, M., Ehsani, A., Hashemi, M., (2017). Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. International Journal of Food Microbiology, 251, 8-14.
[13] Alizadeh-Sani, M., Khezerlou, A., Ehsani, A., (2018). Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Industrial Crops and Products, 124, 300-315.
[14] Qin, Y., Li, W., Liu, D., Yuan, M., Li, L., (2017). Development of active packaging film made from poly (lactic acid) incorporated essential oil. Progress in Organic Coatings, 103, 76-82.
[15] Koontz, J.L., Moffitt, R.D., Marcya, J.E., O’Keefe, S.F., Duncan, S.E. and Long, T.E. 2010. Controlled release of a-tocopherol, quercetin, and their cyclodextrin inclusion complexes from linear low-density polyethylene (LLDPE) films into a coconut oil model food system. Food Additives and Contaminants. 27(11), 1598–1607.
[16] Sun, X., Sui, S., Ference, C., Zhang, Y., Sun, S., & Zhou, N. (2014). Antimicrobial and mechanical properties of β-cyclodextrin inclusion with essential oils in chitosan films. Journal of Agricultural and Food Chemistry, 62(35), 8914–8918.
[17] Chen, G., & Liu, B. (2016). Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocolloids, 55, 100–107.
[18] Jipa, L., Stoica- Guzun, A., Stroescu, M. 2012. Controlled realese of sorbic acide from bacterial cellulose based mono and multilayer antimicrobial films. Food Sience and Technology, 47,400- 406.
[19] Shahmohammadi Jebel, F., & Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8-19.
[20] Wang, S., Cheng, Q., Rials, T. G., & Lee, S. H. (2007). Cellulose microfibril/nanofibril and its nanocomposite. In Proceeding of the 8th Pacific rim bio-based composites symposium.
[21] Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate and cinnamon oil on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydrate polymers, 110, 26-31.
[22] Angles, M. N., & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33(22), 8344-8353.
[23] Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A. A., & Asl, A. K. (2015). Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly (lactic acid): Morphological and physical properties. Food Packaging and Shelf Life, 5, 21-31.
[24] ASTM. Standard test methods for tensile properties of thin plastic sheeting. D882-10. Annual book of ASTM, (2010). Philadelphia, PA: American Society for testing and Materials.
[25] Siripatrawan, U., & Harte, B, R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770-775.
[26] Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami A. A., Khosrowshahi Asl, A. 2014. Development of novel controlled release nanocomposite based on Poly(lactic acid) for increasing the oxidative stability of soybean oil. Food Additives & Contaminants, Part A, 31(9), 1586-1597.
[27] Savadkar, N.R.,Mhaske,S.T. 2012. Synthesis of nano cellulose fibers and effect on thermoplastic starch based films. Carbohydrate Ploymers. 89:146-151.
[28] Du, W. X., Avena-Bustillos, R. J., Hua, S. S. T., & McHugh, T. H. (2011). Antimicrobial volatile essential oils in edible films for food safety. Science against microbial pathogens: communicating current research and technological advances‖, A. Mendez-Vilas (ed.), 1124-1134.
[29] Ahvenainen, R. 2003. Active and intelligent packaging: An introduction. In: Novel food packaging techniques. R. Ahvenainen (ed.). Woodhead Publishing, Cambridge, U.K. pp. 5–21.
[30] Graciano-Verdugo, A. Z., Soto-Valdez, H., Peralta, E., Cruz-Zárate, P., Islas-Rubio, A., Sánchez-Valdes, S., Sánchez-Escalante, A., González-Méndez, N. and González-Ríos, H. 2010. Migration of α-tocopherol from LDPE films to corn oil and its effect on the oxidative stability. Food Research International, 43: 1073-1078.
[31] Jamshidian, M., Arab Tehrany, E. and Desobry, S., 2012. Release of synthetic phenolic antioxidants from extruded poly lactic acid (PLA) film. Food Contaminants. 28: 445-455.
[32] Manzanarez- Lopez,F., Soto- Valdez, H., Auras, A, R. ,& Peralta, E. 2011. Release of alpha-Tocopherd from poly (lactic acide) film and its effect on the oxidative stability of soybean oil. Food Engineering, 104, 508- 517.
[33] Ortiz-Vazquez, H., Shin, J., Soto-Valdez, H. and Auras, R., 2011. Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polymer Testing. 30: 463-471.