[1] Akbariazam, M., Ahmadi, M., Javadian, N. & Mohammadi Nafchi, A. 2016. Fabrication and characterization of soluble soybean polysaccharide and nanorod-rich ZnO bionanocomposite. International Journal of Biological Macromolecules, 89: 369-375.
[2] Siracusa, V., Rocculi, P., Romani, S. & Dalla Rosa, M. 2008. Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12): 634-643.
[3] Rhim, J.W. & Ng, P.K.W. 2007. Natural biopolymer-based nanocom-positefilms for packaging applications. Critical Reverse in Food Science and Nutrition, 47: 411-433.
[4] Kalambur, S. & Rizvi, S.S. 2006. An overview of starch-based plastic blends from reactive extrusion. Journal of Plastic Film and Sheeting, 22(1): 39-58.
[5] BeMiller, J. & Whistler, R. 2009. Starch: chemistry and technology. 3th ed. Maryland. Academic Press. P. 894.
[6] Pandey, J.K. & Singh, R.P. 2005. Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay‐filled starch. Starch‐Stärke, 57(1): 8-15.
[7] Marvizadeh, M. M., Oladzadabbasabadi, N., Nafchi, A. M. & Jokar, M. 2017. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. International Journal of Biological Macromolecules, 99: 1-7.
[8] Okamoto, M. 2005. Handbook of biodegradable polymeric materials and their applications. ACS, USA, 1, 1-45.
[9] Nafchi, A.M., Nassiri, R., Sheibani, S., Ariffin, F. & Karim, A.A. 2013. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate Polymers, 96: 233-239.
[10] Nafchi, A. M., & Alias, A. K. 2013. Mechanical, barrier, physicochemical, and heat seal properties of starch films filled with nanoparticles. Journal of Nano Research, 25(1): 90-100.
[11] Chun, N. & CMHea, L. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. Biological Inorganic Chemistry, 12: 527-534.
[12] Arezoo, E., Mohammadreza, E., Maryam, M., & Abdorreza, M. N. 2020. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International journal of biological macromolecules, 157, 743-751.
[13] STAN, C. Codex General Standard for Food Additives (GSFA). 2008.Online Database available at: http://www. codexalimentarius.net/gsfaonline/index.html. 197-2007.
[14] Hosseini, S. F., Zand, M., Rezaei, M. & Farahmandghavi, F. 2013. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 1: 50-56.
[15] Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Uthaya, U. S., & Khalil, H. A. 2020. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology. 100: 262-277.
[16] Daneshzadeh, M. S., Abbaspour, H., Amjad, L., & Nafchi, A. M. 2020. An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. Journal of Food Measurement and Characterization, 14: 708–715.
[17] Andoğan, B.C., Baydar, H., Kaya, S., Demirci, M., Özbaşar, D. & Mumcu, E. 2002. Antimicrobial activity and chemical composition of some essential oils. Archives of Pharmacal research, 25(6): 860-864.
[18] Mimica-Dukić, N., Bozin, B., Soković, M., Mihajlović, B. & Matavulj, M. 2003. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta medica, 69(5): 413-419.
[19] Teymourpour, Sh., Abdorreza, M.N. & Fariborz, N. 2015. Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2-N. Carbohydrate Polymers, 134: 726-731.
[20] Sánchez-González, L., Cháfer, M., Chiralt, A. & González-Martínez, C. 2010. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82: 277-283.
[21] Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M. & Gottifredi, J.C. 2007. Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3): 972-978.
[22] Ghazihoseini, S., Alipoormazandarani, N. & Mohammadi Nafchi, A. 2015. The Effects of Nano-SiO2 on Mechanical, Barrier, and Moisture Sorption Isotherm Models of Novel Soluble Soybean Polysaccharide Films. International Journal of Food Engineering, p. 833.
[23] Maizura, M., Fazilah, A., Norziah, M. & Karim, A. 2007. Antibacterial Activity and Mechanical Properties of Partially Hydrolyzed Sago Starch–Alginate Edible Film Containing Lemongrass Oil. Journal of Food Science, 72: C324-C330.
[24] Zwietering, M.H., Jongenburger, I., Rombouts, F.M. & Van’t Riet, K. 1990. Modeling of the Bacterial Growth Curve. Applied Environment and Microbiology, 56: 1875-1881.
[25] Zeppa, C., Gouanve, F. & Espuche, E. 2009. Effect of a plasticizer on the structure of biodegradable starch clay nanocomposites: thermal, water sorption, and oxygen barrier properties. Journal of Applied Polymer Science, 112: 2044-2056.
[26] Müller, C. M. O., Laurindo, J. B. & Yamashita, F. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33(3): 605-610.
[27] Tabari, M. 2018. Characterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles. Nanomed Research Journal, 3(1): 25-30.
[28] Galus, S. & Kadzinska, J. 2016. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil. Food Technology & Biotechnology, 54(1): 78-89.
[29] Zhou, J., Wang, S. & Gunasekaran, S. 2009. Preparation and characterization of whey protein film incorporated with TiO2-N nanoparticles. Journal of Food Science, 74(7): N50-N6.
[30] Mirzajani, F., Aliahmadi, A. & Esmaeili, M.S.J. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology, 162: 542-549.
[31] Panyala, N.M., Penamendez, E. & Havel, M.J. 2008. Silver or nanoparticles:A hazardous threat to environment and human health? Journal Applied Biomedical, 6: 117-122.
[32] Kabir, F., Katayama, S., Tanji, N. & Nakamura, S. 2014. Antimicrobial effects of chlorogenic acid and related compounds. Journal of the Korean Society for Applied Biological Chemistry, 57: 359-365.
[33] Sivropoulou, A., Kokkini, S., Lanaras, T., Arsenakis, M., Papaniko laou, E. & Nikolaou, C. 1996. Antimicrobial and cytotixic activities of Origanum essential oil concentration. Journal of Agriculture and Food Chemistry, 44: l202-1205.
[34] Yuan, Z., Lv, H., Yang, B., Chen, X. & Sun, H. 2015. Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules, 20: 11034-11045.
[35] Sun, L., Sun, J., Chen, L., Niu, P., Yang, X. & Guo, Y. 2017. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydrate Polymers, 1-34.
[36] Izadi, Z., Ahmadvand, G., Esna-Ashari, M., Piri, K. & Davoodi, P. 2010. Biochemical and Antimicrobial Activities of Salvia Officinalis L. and Mentha Piperita L. Essential oils. Armaghane danesh, 15(1): 19-29.