[1] Eibl, R., Meier, P., Stutz, I., Schildberger, D., Hühn, T., & Eibl, D. (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology, 102(20), 8661-8675.
[2] Ragavendran, C., & Natarajan, D. (2017). Role of Plant Tissue Culture for Improving the Food Security in India: A Review Update. In Sustainable Agriculture towards Food Security (pp. 231-262). Springer, Singapore.
[3] Dias, M. I., Sousa, M. J., Alves, R. C., & Ferreira, I. C. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9-22.
[4] Šuković, D., Knežević, B., Gašić, U., Sredojević, M., Ćirić, I., Todić, S., ... & Tešić, Ž. (2020). Phenolic profiles of leaves, grapes and of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods, 9(2), 138.
[5] Zareei, E., Zaare-Nahandi, F., Oustan, S., & Hajilou, J. (2019). Effects of magnetic solutions on some biochemical properties and production of some phenolic compounds in grapevine (Vitis vinifera L.). Scientia Horticulturae, 253, 217-226.
[6] Karaaslan, M., Ozden, M., Vardin, H., & Turkoglu, H. (2011). Phenolic fortification of yogurt using grape and callus extracts. LWT-Food Science and Technology, 44(4), 1065-1072.
[7] Durazzo, A., & Lucarini, M. (2019). The State of Science and Innovation of Bioactive Research and Applications, Health and Diseases. Frontiers in Nutrition, 6, 178.
[8] Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., ... & Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243.
[9] Burcova, Z., Kreps, F., Schmidt, S., Strizincova, P., Jablonsky, M., Kyselka, J., ... & Surina, I. (2019). Antioxidant Activity and the Tocopherol and Phenol Contents of Grape Residues. BioResources, 14(2), 4146-4156.
[10] Ferhi, S., Santaniello, S., Zerizer, S., Cruciani, S., Fadda, A., Sanna, D., ... & D’hallewin, G. (2019). Total phenols from grape leaves counteract cell proliferation and modulate apoptosis-related gene expression in MCF-7 and HepG2 human cancer cell lines. Molecules, 24(3), 612.
[11] Durante, M., Montefusco, A., Marrese, P. P., Soccio, M., Pastore, D., Piro, G., ... & Lenucci, M. S. (2017). Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. Journal of Food Composition and Analysis, 63, 65-72.
[12] Ismail, E. H., Khalil, M. M., Al Seif, F. A., El-Magdoub, F., Bent, A. N., Rahman, A., & Al, U. S. D. (2014). Biosynthesis of gold nanoparticles using extract of grape (Vitis vinifera) leaves and seeds. Prog Nanotechnol Nanomater, 3, 1-12.
[13] Xu, C., Zhang, Y., Wang, J., & Lu, J. (2010). Extraction, distribution and characterisation of phenolic compounds and oil in grapeseeds. Food Chemistry, 122(3), 688-694.
[14] Secer, O. M., Guneser, B. A., & Guneser, O. (2020). Prediction of shelf-life and kinetics of quality changes in canned stuffed grape leaves. LWT, 109850.
[15] Pantelić, M. M., Zagorac, D. Č. D., Ćirić, I. Ž., Pergal, M. V., Relić, D. J., Todić, S. R., & Natić, M. M. (2017). Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. Journal of Food Composition and Analysis, 62, 76-83.
[16] Rezazad Bari, L., Rezazad Bari, M., Ghasemnejhad, M., & Alizadeh khaledbad, M. (2015). Effect of titanium dioxide nanoparticles on three varieties of table grapes (Bidane Sefid, Gezel Ozom and Rish Baba) shelf life and controlling postharvest decay properties. Journal of Food Research (Agricultural Science), Volume:24 Issue: 3 [In Persian].
[17] Alizadeh, M., Singh, S. K., Patel, V. B., Bhattacharya, R. C., & Yadav, B. P. (2010). In vitro responses of grape rootstocks to NaCl. Biologia Plantarum, 54(2), 381-385.
[18] Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135, 311-320.
[19] Lucarini, M., Durazzo, A., Kiefer, J., Santini, A., Lombardi-Boccia, G., Souto, E. B., ... & Bevilacqua, N. (2020). Grape seeds: Chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods, 9(1), 10.
[20] Asadi, S., & Pirsa, S. (2020). Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO2 and Studying Its Physicochemical Properties. Journal of Polymers and the Environment, 28(2), 433-444.
[21] Kalantari, S., Roufegarinejad, L., Pirsa, S., & Gharekhani, M. (2020). Green extraction of bioactive compounds of pomegranate peel using β-Cyclodextrin and ultrasound. Main Group Chemistry, 19(1), 61-80.
[22] Pirsa, S., Karimi Sani, I., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634-648.
[23] ZADEH, M. N., PIRSA, S., AMIRI, S., & BARI, L. R. (2020). Application of the Edible Coating of Carboxy Methyl Cellulose/Pectin Composite Containing Humulus lupulus Extract on the Shelf Life of Fresh Cute Oranges at Cold Conditions. Iraninan Journal of Biosystem engeeniering, 51, 471-484. [In Persian].
[24] Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.
[25] Schoedl, K., Forneck, A., Sulyok, M., & Schuhmacher, R. (2011). Optimization, in-house validation, and application of a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based method for the quantification of selected polyphenolic compounds in leaves of grapevine (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 59(20), 10787-10794.
[26] Mahesar, S. A., Lucarini, M., Durazzo, A., Santini, A., Lampe, A. I., & Kiefer, J. (2019). Application of Infrared Spectroscopy for Functional Compounds Evaluation in Olive Oil: A Current Snapshot. Journal of Spectroscopy, 2019.
[27] Mohammadkhani, N. (2018). EFFECTS OF SALINITY ON PHENOLIC COMPOUNDS IN TOLERANT AND SENSITIVE GRAPES. Poljoprivreda i Sumarstvo, 64(2), 73-86.
[28] Jogaiah, S., Ramteke, S. D., Sharma, J., & Upadhyay, A. K. (2014). Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. International Journal of Agronomy, 2014.
[29] Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.
[30] Rizk, M. Z., Borai, I. H., Ezz, M. K., El-Sherbiny, M., Aly, H. F., Matloub, A., & Fouad, G. I. (2018). Possible therapeutic role of grape (Vitis vinifera) leaves polyphenolic extract in the regression of aluminium-induced Alzheimer's disease in rats. Journal of Materials and Environmental Science, 9(7), 2098-2108.
[31] Bagheri, N., Heidari, R., Amiri, S. & Bagheri, N. (2015). Quantitative and qualitative comparison of red grape juice of Urmia and black grape juice of Sardasht. 4th National Conference on Agriculture and Sustainable Natural Resources, Tehran, Iran [In Persian].
[32] Bagheri, N., Heidari, R., Ilkhanipour, M. & Amiri, S. (2015). Comparison of biochemical and antioxidant properties of Urmia red grape juice and Sardasht black grape juice. 4th National Conference on Agriculture and Sustainable Natural Resources, Tehran, Iran [In Persian].
[33] Baneh, H. D., Attari, H., Hassani, A., & Abdollahi, R. (2013). Salinity effects on the physiological parameters and oxidative enzymatic activities of four Iranian grapevines (Vitis vinifera L.) cultivar. International Journal of Agriculture and Crop Sciences (IJACS), 5(9), 1022-1027.
[34] Fraige, K., Pereira-Filho, E. R., & Carrilho, E. (2014). Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC–DAD–MS and exploratory analysis by principal component analysis. Food Chemistry, 145, 395-403.
[35] Nabli, R., Achour, S., Jourdes, M., Teissedre, P. L., Helal, A. N., & Ezzili, B. (2012). Anthocyanin composition and extraction from Grenache noir (Vitis vinifera L.) vine leaf using an experimental design. I-By ethanol or sulfur dioxide. OENO One, 46(4), 295-304.
[36] Mibei, E. K., Ambuko, J., Giovannoni, J. J., Onyango, A. N., & Owino, W. O. (2017). Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Science & Nutrition, 5(1), 113-122.
[37] Pavithra, K., & Vadivukkarasi, S. (2015). Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Science and Human Wellness, 4(1), 42-46.
[38] Sowndhararajan, K., & Kang, S. C. (2013). Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi journal of biological sciences, 20(4), 319-325.
[39] Wechtersbach, L., Ulrih, N. P., & Cigić, B. (2012). Liposomal stabilization of ascorbic acid in model systems and in food matrices. LWT-food science and technology, 45(1), 43-49.