تحلیل ترودینامیکی فرآیند خشک کردن سیب‌زمینی در یک خشک‌کن مایکروویو

نویسندگان
1 دانشجوی دکتری گروه مهندسی مکانیک بیوسیستم دانشگاه شیراز، شیراز، ایران
2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه جهرم. کد پستی ۱۱۱-۷۴۱۳۵
چکیده
در پژوهش حاضر، فرآیند خشک کردن ورقه‌های نازک سیب‌زمینی با توان مایکروویو از جنبه ترمودینامیکی مورد تحلیل و ارزیابی قرار گرفت. در طی آزمایش‌ها، ورقه‌های سیب‌زمینی با ضخامت‌های 5/3، 5، 7 و 9 میلی‌متر با توان‌های 200، 400، 600 و 800 وات خشکانده شدند. انرژی مصرفی ویژه در محدوده 83/ تا 29/3 مگاژول بر کیلوگرم به دست آمد و با افزایش ضخامت نمونه‌ها به طور معنی‌داری (در سطح احتمال 5 درصد) افزایش یافت. راندمان انرژی فرآیند (23/13 تا 59/35 درصد) با افزایش توان مایکروویو و کاهش ضخامت نمونه‌ها به طور معنی‌داری (در سطح احتمال 5) بهبود یافت. انرژی تلف شده ویژه در طی فرآیند از69/0 تا 71/2 مگاژول بر کیلوگرم متغیر بود. راندمان اگزرژی و شاخص پایداری فرآیند به ترتیب از 03/10 تا 17/28 درصد و از 11/1 تا 39/1 متغیر بودند. در مجموع، بر اساس نتایج به دست آمده در این پژوهش، استفاده از توان‌های بالاتر مایکروویو برای خشکاندن نمونه‌های نازک‌تر باعث بهبود عملکرد ترمودینامیکی و کاهش اثرات زیست محیطی فرآیند شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Thermodynamic analysis of potato drying process in a microwave dryer

نویسندگان English

Hadi Azimi-Nejadian 1
Ehsan Houshyar 2
1 Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Mechanical Engineering of Biosystems, Jahrom University, PO BOX 74135–111, Jahrom, Iran
چکیده English

In the present research, microwave drying process of potato slices were thermodynamically analyzed and evaluated. During the experiments, potato slices with thicknesses of 3.5, 5, 7 and 9 mm were dried using powers of 200, 400, 600 and 800 W. Specific energy consumption was obtained to be the range of 0.83‒3.29 MJ kg-1, and significantly increased (p < 0.05) with increasing samples thickness. Energy efficiency of the process (13.23‒35.59) was significantly (p < 0.05) improved with increasing microwave power and decreasing samples thickness. Average specific energy loss of the process varied from 0.69 to 2.71 MJ kg-1. Exergy efficiency and sustainability index of the process changed from 10.03 to 28.17 % and from 1.11 to 1.39, respectively. In General, according to the results obtained in this research, practicing higher microwave powers to dry thinner samples improved the thermodynamical performance and reduced the environmental footprints of the process.

کلیدواژه‌ها English

Microwave power
Thin-layer drying
Energy efficiency
Exergy efficiency
Sustainability index
1. Beigi, M. 2018. Effect of infrared drying power on dehydration characteristics, energy consumption, and quality attributes of common wormwood (Artemisia absinthium L.) leaves, Journal of Agricultural Science and Technology. 20(4), 709‒718.
2. Ghanbarian, D., Torki-Harchegani, M., Ghasemi Pirbalouti, A., Sadeghi, M. 2018. Drying of peppermint leaves (Mentha piperita L.) in a combined hot air-ultrasonic dryer: Influences of temperature and ultrasound power on duration, energy consumption, and essential oil yield, Journal of Food Science and Technology. 15(81), 345‒357.
3. Tohidi, M., Sadeghi, M., Torki-harchegani, M. 2017. Energy and quality aspects for fixed deep bed drying of paddy, Renewable and Sustainable Energy Reviews. 70, 519‒528.
4. Beigi, M. 2018. Energy and exergy analyses for drying process of apple cubes in a hot air dryer, Journal of Food Science and Technology. 15(76), 1‒11.
5. Aviara, N.A., Onuoha, L.N., Falola, O.E., Igbeka, J.C. 2014. Energy and exergy analyses of native cassava starch drying in a tray dryer, Energy. 73, 809–817.
6. Dincer, I. 2002. On energetic, exergetic and environmental aspects of drying systems, International Journal of Energy Research. 26(8), 717–727.
7. Bagheri, H., Arabhoseini, A., Kianmehr, M. 2015. Energy and exergy analyses of thin layer drying of tomato in a forced solar dryer, Iranian Journal of Biosystem Engineering. 46(1), 39‒45.
8. Saidur, R., Boroumandjaz, G., Mekhlif, S., Jameel, M. 2012. Exergy analysis of solar energy applications, Renewable and Sustainable Energy Reviews. 16(1), 350–356.
9. Mokhtarian, M., Kalbasi-Ashtari, A. 2018. Exergy and energy analyses for solar drying of peppermint (Mentha piperita) with a double-pass collector, Innovative Food Technologies. DOI: 10.22104/JIFT.2018.2978.1724
10. Nazghelichi, T., Kianmehr, M.H., Aghbashlo, M. 2010. Thermodynamic analysis of fluidized bed drying of carrot cubes, Energy. 35(12), 4679–4684.
11. Erbay, Z., Icier, F. 2011. Energy and exergy analysis on drying of olive leaves (Olea europaea L.) in tray drier, Journal of Food Process Engineering. 34(6), 2105–2123.
12. Aghbashlo, M., Mobli, H., Rafiee, S., Madalou, A. 2012. Energy and exergy analyses of the spray drying process of fish oil encapsulation, Biosystems Engineering. 111(2), 229–241.
13. Saygi, G., Erbay, Z., Koca, N., Pazir, F. 2015. Energy and exergy analyses of spray drying of a fruit puree (cornelian cherry puree), International Journal of Exergy. 16(3), 315–336.
14. Icier, F., Colak, N., Erbay, Z., Kuzgunkaya, E.H., Hepbasli, A. 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems, Drying Technology. 28(2), 193–204.
15. Farhudi, Z., Darvishi, H., Behroozi, N. 2018. Energy and exergy analyses of continues infrared-hot air current dryer with air recycling, Innovative Food Technologies. 5(2), 253‒271.
16. Darvishi, H., Zarein, M., Minaei, S., Khafajeh, H. (2014). Exergy and energy analysis, drying kinetics and mathematical modeling of white mulberry drying process, International Journal of Food Engineering. 10(2), 269‒280.
17. Darvishi, H., Zarein, M., Farhudi, Z. (2016). Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices, Journal of Food Science and Technology. 53(5), 2317‒2333.
18. Jafari, H., Kalantari, D., Azadbakht, M. (2017). Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it’s qualitative, Energy. 138, 1016‒1029.
19. Surendhar, A., Sivasubramanian, V., Vidhyeswari, D., Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices, Journal of Thermal Analysis and Calorimetry. 136(1), 185‒197.
20. Beigi, M. 2016. Energy efficiency and moisture diffusivity of apple slices during convective drying, Food Science and Technology. 36(1), 145‒150.
21. Jindarat, W., Rattanadecho, P., Vongpradubchai, S. 2011. Analysis of energy consumption in microwave and convective drying process of multilayered porous material inside a rectangular wave guide, Experimental Thermal and Fluid Science. 35(4) 728‒737.
22. Wang, N., Brennan, J.G. 1993. The influence of moisture content and temperature on the specific heat of potato measured by differential scanning calorimetry, Journal of Food Engineering. 19(3), 303‒310.
23. Beigi, M., Tohidi, M., Torki-Harchegani, M. 2017. Exergetic analysis of deep-bed drying of rough rice in a convective dryer, Energy. 140, 374‒382.
24. Darvishi, H., Khoshtaghaza, M.H., Najafi, G., Nargesi, F. 2013. Mathematical modeling of green pepper drying in microwave-convective dryer, Journal of Agricultural Science and Technology. 15, 457‒465.
25. Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A., Sadeghi, M. 2016. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments, Renewable and Sustainable Energy Reviews. 58, 407‒418.
26. Beigi, M. 2017. Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption, Heat and Mass Transfer. 53(8), 2711‒2718.
27. Azimi-Nejadian, H., Hoseini, S.S. 2019. Study the effect of microwave power and slices thickness on drying characteristics of potato, Heat and Mass Transfer. 55(10), 2921‒2930.
28. Ghanbarian, D., Baraani Dastjerdi, M., Torki-Harchegani, M. 2016. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying. Heat and Mass Transfer. 52(5), 1081‒1088.
29. Ranjbaran, M., Zare, D. 2013. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans, Energy. 59, 484‒493.
30. Akpinar, E.K., Midilli, A., Bicer, Y. 2006. The first and second law analyses of thermodynamic of pumpkin drying process, Journal of Food Engineering. 72(4), 320–331.