1. Beigi, M. 2018. Effect of infrared drying power on dehydration characteristics, energy consumption, and quality attributes of common wormwood (Artemisia absinthium L.) leaves, Journal of Agricultural Science and Technology. 20(4), 709‒718.
2. Ghanbarian, D., Torki-Harchegani, M., Ghasemi Pirbalouti, A., Sadeghi, M. 2018. Drying of peppermint leaves (Mentha piperita L.) in a combined hot air-ultrasonic dryer: Influences of temperature and ultrasound power on duration, energy consumption, and essential oil yield, Journal of Food Science and Technology. 15(81), 345‒357.
3. Tohidi, M., Sadeghi, M., Torki-harchegani, M. 2017. Energy and quality aspects for fixed deep bed drying of paddy, Renewable and Sustainable Energy Reviews. 70, 519‒528.
4. Beigi, M. 2018. Energy and exergy analyses for drying process of apple cubes in a hot air dryer, Journal of Food Science and Technology. 15(76), 1‒11.
5. Aviara, N.A., Onuoha, L.N., Falola, O.E., Igbeka, J.C. 2014. Energy and exergy analyses of native cassava starch drying in a tray dryer, Energy. 73, 809–817.
6. Dincer, I. 2002. On energetic, exergetic and environmental aspects of drying systems, International Journal of Energy Research. 26(8), 717–727.
7. Bagheri, H., Arabhoseini, A., Kianmehr, M. 2015. Energy and exergy analyses of thin layer drying of tomato in a forced solar dryer, Iranian Journal of Biosystem Engineering. 46(1), 39‒45.
8. Saidur, R., Boroumandjaz, G., Mekhlif, S., Jameel, M. 2012. Exergy analysis of solar energy applications, Renewable and Sustainable Energy Reviews. 16(1), 350–356.
9. Mokhtarian, M., Kalbasi-Ashtari, A. 2018. Exergy and energy analyses for solar drying of peppermint (Mentha piperita) with a double-pass collector, Innovative Food Technologies. DOI: 10.22104/JIFT.2018.2978.1724
10. Nazghelichi, T., Kianmehr, M.H., Aghbashlo, M. 2010. Thermodynamic analysis of fluidized bed drying of carrot cubes, Energy. 35(12), 4679–4684.
11. Erbay, Z., Icier, F. 2011. Energy and exergy analysis on drying of olive leaves (Olea europaea L.) in tray drier, Journal of Food Process Engineering. 34(6), 2105–2123.
12. Aghbashlo, M., Mobli, H., Rafiee, S., Madalou, A. 2012. Energy and exergy analyses of the spray drying process of fish oil encapsulation, Biosystems Engineering. 111(2), 229–241.
13. Saygi, G., Erbay, Z., Koca, N., Pazir, F. 2015. Energy and exergy analyses of spray drying of a fruit puree (cornelian cherry puree), International Journal of Exergy. 16(3), 315–336.
14. Icier, F., Colak, N., Erbay, Z., Kuzgunkaya, E.H., Hepbasli, A. 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three different drying systems, Drying Technology. 28(2), 193–204.
15. Farhudi, Z., Darvishi, H., Behroozi, N. 2018. Energy and exergy analyses of continues infrared-hot air current dryer with air recycling, Innovative Food Technologies. 5(2), 253‒271.
16. Darvishi, H., Zarein, M., Minaei, S., Khafajeh, H. (2014). Exergy and energy analysis, drying kinetics and mathematical modeling of white mulberry drying process, International Journal of Food Engineering. 10(2), 269‒280.
17. Darvishi, H., Zarein, M., Farhudi, Z. (2016). Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices, Journal of Food Science and Technology. 53(5), 2317‒2333.
18. Jafari, H., Kalantari, D., Azadbakht, M. (2017). Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it’s qualitative, Energy. 138, 1016‒1029.
19. Surendhar, A., Sivasubramanian, V., Vidhyeswari, D., Deepanraj, B. (2019). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices, Journal of Thermal Analysis and Calorimetry. 136(1), 185‒197.
20. Beigi, M. 2016. Energy efficiency and moisture diffusivity of apple slices during convective drying, Food Science and Technology. 36(1), 145‒150.
21. Jindarat, W., Rattanadecho, P., Vongpradubchai, S. 2011. Analysis of energy consumption in microwave and convective drying process of multilayered porous material inside a rectangular wave guide, Experimental Thermal and Fluid Science. 35(4) 728‒737.
22. Wang, N., Brennan, J.G. 1993. The influence of moisture content and temperature on the specific heat of potato measured by differential scanning calorimetry, Journal of Food Engineering. 19(3), 303‒310.
23. Beigi, M., Tohidi, M., Torki-Harchegani, M. 2017. Exergetic analysis of deep-bed drying of rough rice in a convective dryer, Energy. 140, 374‒382.
24. Darvishi, H., Khoshtaghaza, M.H., Najafi, G., Nargesi, F. 2013. Mathematical modeling of green pepper drying in microwave-convective dryer, Journal of Agricultural Science and Technology. 15, 457‒465.
25. Torki-Harchegani, M., Ghanbarian, D., Ghasemi Pirbalouti, A., Sadeghi, M. 2016. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments, Renewable and Sustainable Energy Reviews. 58, 407‒418.
26. Beigi, M. 2017. Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption, Heat and Mass Transfer. 53(8), 2711‒2718.
27. Azimi-Nejadian, H., Hoseini, S.S. 2019. Study the effect of microwave power and slices thickness on drying characteristics of potato, Heat and Mass Transfer. 55(10), 2921‒2930.
28. Ghanbarian, D., Baraani Dastjerdi, M., Torki-Harchegani, M. 2016. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying. Heat and Mass Transfer. 52(5), 1081‒1088.
29. Ranjbaran, M., Zare, D. 2013. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans, Energy. 59, 484‒493.
30. Akpinar, E.K., Midilli, A., Bicer, Y. 2006. The first and second law analyses of thermodynamic of pumpkin drying process, Journal of Food Engineering. 72(4), 320–331.