بهبود تولید گابا و زنده مانی لاکتوباسیلوس برویس G42 در شرایط شبیه سازی شده دستگاه گوارش با استفاده از ریزپوشانی با ایزوله پروتئین سویا و آلژینات سدیم

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، ایران
3 گروه بیوشیمی و بیوفیزیک، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
چکیده
گاما آمینو بوتیریک اسید (GABA) یک اسید آمینه غیر پروتئینی است که از باکتری­ها، گیاهان و مهره داران بدست می­آید. گابا یک ترکیب شناخته شده است زیرا نقش فیزیولوژیکی مهمی در انتقال پیام­های عصبی، کاهش فشار خون، تکرر ادرار و ایجاد آرامش دارد. گابا به صورت بیولوژیکی به وسیله­ی اسید لاکتیک باکتریاها تولید می­شود که به صورت گسترده در تخمیر غذاها استفاده می­شوند. در این مطالعه باکتری­های تولید کننده گابا برای ریز پوشانی به وسیله ی ایزوله پورتئین سویا و آلژینات انتخاب شده و به روش امولسیون­سازی ریزپوشانی شدند. راندمان ریزپوشانی و میزان به دام افتادن باکتری­های تولیدکننده گابا در کپسول­های ایزوله پروتئین سویا و آلژینات به کمک میکروسکوپ الکترونی روبشی تایید شد. توانایی تولید گابا و زنده مانی باکتری­های ریز پوشانی شده در شرایط شبیه سازی شده دستگاه گوارش انسان بررسی شد. برای شناسایی باکتری­های تولید کننده گابا، باکتری­های ایزوله شده از ترخینه و هویج تخمیر شده روی محیط کشت MRS حاوی 1 درصد مونوسدیم گلوتامات کشت شد. راندمان تولید گابا به کمک کروماتوگرافی لایه نازک (TLC) و کروکاتوگرافی مایع (HPLC) بررسی شد. بر اساس نتایج ثبت شده، لاکتوباسیلوس برویس PML1 ایزوله شده از ترخینه و لاکتوباسیلوس برویس G42 ایزوله شده از هویج تخمیر شده میزان تولید گابا را 304 میلیگرم بر لیتر و 2511 میلی گرم بر لیتر بعد از 30 ساعت در 30 درجه سانتیگراد نشان دادند. نتایج نشان داد زنده مانی و میزان تولید گابا به کمک ریزپوشانی با ایزوله پروتئین سویا و آلژینات و به دلیل تولید مناسب سلول بهبود یافته است. این مطالعه پتانسیل ریز پوشانی باکتری­ها همراه با افزایش راندمان تولید گابا با هدف ایجاد یک غذای فراسودمند را نشان می­دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Improvement of GABA production and survival of Lactobacillus brevis G42 in simulated gastrointestinal conditions by soy- alginate microcapsulation

نویسندگان English

Mohjdeh Karimi 1
farideh tabatabaei yazdi 1
seyed ali mortazavi 1
iman shahabi qahfarrokhi 2
Jamshid khan chamani 3
1 -
2 Zanjan
3 Mashhad branch Islamic azad university
چکیده English

Gamma-aminobutyric acid (GABA) is a non-protein amino acid existing in bacteria, plants, and vertebrates. GABA is especially well-known because of its physiological role in the neurotransmission, induction of hypotension, diuresis, and tranquility. GABA is biologically synthesized by GABA-producing lactic acid bacteria (GLAB) which are widely used as starters in the fermented foods. In this study, GABA-producing strain were chosen to be microencapsulated by soy protein isolate (SPI)-alginate using emulsion method. Encapsulation efficiency and entrapment of GLAB into soy protein-alginate microcapsules (SAE) was confirmed by scanning electron microscope. The GABA-producing ability and survivability of the microencapsulated GLABs were investigated in the human gastro-intestinal simulant. For screening of GLAB strains, the isolates from Tarkhineh and fermented carrot were separately cultivated in MRS broth supplemented with 1% (w/v) monosodium glutamate (MSG). The GABA production efficiency was studied by thin layer chromatography (TLC) and High performance liquid chromatography (HPLC). According to the recorded chromatograms, Lactobacillus brevis PML1 isolated from Tarkhineh and Lactobacillus brevis G42 from fermented carrot showed GABA producing ability of 304 mg/L and 2511 mg/L, after 30 h at 30 °C, respectively. The results indicated that survival and GABA production improved upon microencapsulating the bacteria due to the good cell protection provided by soy protein isolate-alginate coating. In long with previous reports, this study proves the potential of microencapsulation toward increased efficiency of GABA production in functional foods.

کلیدواژه‌ها English

Functional Food
Microencapsulation
γ-Aminobutyric Acid (GABA)
Lactobacillus brevis
Soy protein isolate
1. DeFeudis, F.V., Muscimol binding and GABA receptors. Drug Development Research, 1981. 1(2): p. 93-105.
2. Tujioka, K., et al., Dietary γ-aminobutyric acid affects the brain protein synthesis rate in ovariectomized female rats. Journal of nutritional science and vitaminology, 2009. 55(1): p. 75-80.
3. Diana, M., J. Quílez, and M. Rafecas, Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of functional foods, 2014. 10: p. 407-420.
4. Sasaki, S., et al., Protective role of γ‐aminobutyric acid against chronic renal failure in rats. Journal of pharmacy and pharmacology, 2006. 58(11): p. 1515-1525.
5. Sun, B., Research of Some Physiological Active Substance by Fermentation of Monascus spp. 2004, Dissertation for Master Degree.] Zhejiang Industry University, China: 40–55.
6. Abdou, A.M., et al., Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors, 2006. 26(3): p. 201-208.
7. Oh, S.-H., J.-R. Soh, and Y.-S. Cha, Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. Journal of medicinal food, 2003. 6(2): p. 115-121.
8. Wiens, S.C. and V.L. Trudeau, Thyroid hormone and γ-aminobutyric acid (GABA) interactions in neuroendocrine systems. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006. 144(3): p. 332-344.
9. Xu, C. and Y. Xia, Clinical observations on the control acute attack of deficiency-syndrome asthma with γ-aminobutyric acid. Chinese Journal of Binzhou Medical College, 1999. 22: p. 181.
10. Kazemi, H. and B. Hoop, Glutamic acid and gamma-aminobutyric acid neurotransmitters in central control of breathing. Journal of Applied Physiology, 1991. 70(1): p. 1-7.
11. Okada, T., et al., Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi= Journal of the Japanese Society for Food Science and Technology, 2000. 47(8): p. 596-603.
12. Leventhal, A.G., et al., GABA and its agonists improved visual cortical function in senescent monkeys. Science, 2003. 300(5620): p. 812-815.
13. Kayahara, H. and T. Sugiura, Research on physiological function of GABA in recent years-improvement function of brain function and anti-hypertension. Japanese Journal of Food development, 2001. 36(6): p. 4-6.
14. Adeghate, E. and A. Ponery, GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue and Cell, 2002. 34(1): p. 1-6.
15. Kleinrok, Z., et al., GABA content and GAD activity in colon tumors taken from patients with colon cancer or from xenografted human colon cancer cells growing as sc tumors in athymic nu/nu mice. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 1998. 49(2): p. 303-310.
16. Wong, T., et al., Gaba, γ‐hydroxybutyric acid, and neurological disease. Annals of neurology, 2003. 54(S6).
17. Feehily, C. and K. Karatzas, Role of glutamate metabolism in bacterial responses towards acid and other stresses. Journal of applied microbiology, 2013. 114(1): p. 11-24.
18. Omar, N.B., et al., Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Systematic and Applied Microbiology, 2000. 23(2): p. 285-291.
19. Gardner, N.J., et al., Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. International journal of food microbiology, 2001. 64(3): p. 261-275.
20. Satokari, R.M., et al., Molecular approaches for the detection and identification of bifidobacteria and lactobacilli in the human gastrointestinal tract. Systematic and applied microbiology, 2003. 26(4): p. 572-584.
21. Binh, T.T.T., et al., Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnology letters, 2014. 36(1): p. 93-98.
22. Huang, J., et al., Purification and Characterization of Glutamate Decarboxylase of Lactobacillus brevis CGMCC 1306 Isolated from Fresh Milk** Supported by the National Natural Science Foundation of China (No. 30570411) and the Research Plan of Zhejiang Province, China. Chinese Journal of Chemical Engineering, 2007. 15(2): p. 157-161.
23. Li, H., et al., A high γ-aminobutyric acid-producingLactobacillus brevis isolated from Chinese traditionalpaocai. Annals of Microbiology, 2008. 58(4): p. 649-653.
24. Ueno, Y., et al., Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, biotechnology, and biochemistry, 1997. 61(7): p. 1168-1171.
25. Nomura, M., et al., Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology, 1999. 145(6): p. 1375-1380.
26. Siragusa, S., et al., Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and environmental microbiology, 2007. 73(22): p. 7283-7290.
27. Komatsuzaki, N., et al., Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food microbiology, 2005. 22(6): p. 497-504.
28. Park, K.-B. and S.-H. Oh, Isolation and characterization of Lactobacillus buchneri strains with high γ-aminobutyric acid producing capacity from naturally aged cheese. Food Science and Biotechnology, 2006.
29. Das, D. and A. Goyal, Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT-Food Science and Technology, 2015. 61(1): p. 263-268.
30. Di Cagno, R., et al., Synthesis of γ-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied microbiology and biotechnology, 2010. 86(2): p. 731-741.
31. Kim, J.E., et al., Novel bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus plantarum K154. Food Science and Biotechnology, 2014. 23(5): p. 1551-1559.
32. Shan, Y., et al., Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. Journal of dairy science, 2015. 98(4): p. 2138-2149.
33. Lin, Q., Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production. Brazilian Journal of Microbiology, 2013. 44(1): p. 183-187.
34. Li, H., et al., Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino acids, 2010. 38(5): p. 1439-1445.
35. Cho, Y.R., J.Y. Chang, and H.C. Chang, Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology and Biotechnology, 2007. 17(1): p. 104-109.
36. Lu, X., et al., Isolation of γ-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochemical Engineering Journal, 2008. 41(1): p. 48-52.
37. Seok, J.-H., et al., Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Science and Biotechnology, 2008. 17(5): p. 940-946.
38. Nomura, M., et al., Production of γ-aminobutyric acid by cheese starters during cheese ripening. Journal of Dairy Science, 1998. 81(6): p. 1486-1491.
39. Ratanaburee, A., et al., Enhancement of γ-aminobutyric acid in a fermented red seaweed beverage by starter culture Lactobacillus plantarum DW12. Electronic Journal of Biotechnology, 2011. 14(3): p. 1-1.
40. Li, H. and Y. Cao, Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino acids, 2010. 39(5): p. 1107-1116.
41. Gbassi, G.K. and T. Vandamme, Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 2012. 4(1): p. 149-163.
42. Jantarathin, S., C. Borompichaichartkul, and R. Sanguandeekul, Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding. Materials Today: Proceedings, 2017. 4(5): p. 6166-6172.
43. Dong, Q.Y., et al., Alginate‐based and protein‐based materials for probiotics encapsulation: a review. International Journal of Food Science & Technology, 2013. 48(7): p. 1339-1351.
44. Krasaekoopt, W., B. Bhandari, and H. Deeth, Evaluation of encapsulation techniques of probiotics for yoghurt. International dairy journal, 2003. 13(1): p. 3-13.
45. Maltais, A., G.E. Remondetto, and M. Subirade, Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocolloids, 2009. 23(7): p. 1647-1653.
46. Maltais, A., G.E. Remondetto, and M. Subirade, Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids, 2010. 24(5): p. 518-524.
47. Yew, S.E., et al., Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase. Journal of food science, 2011. 76(3): p. H108-H115.
48. Zhang, Y., et al., Soy Protein Isolate-Alginate Microspheres for Encapsulation ofEnterococcus faecalis HZNU P2. Brazilian Archives of Biology and Technology, 2015. 58(5): p. 805-811.
49. Hadzieva, J., et al., Lactobacillus casei encapsulated in soy protein isolate and alginate microparticles prepared by spray drying. Food technology and biotechnology, 2017. 55(2): p. 173-186.
50. Choi, S.-I., et al., Improvement of $gamma-Aminobutyric $ Acid (GABA) Production Using Cell Entrapment of Lactobacillus brevis GABA 057. Journal of microbiology and biotechnology, 2006. 16(4): p. 562-568.
51. Huang, J., et al., Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal of Microbiology and Biotechnology, 2007. 23(6): p. 865-871.
52. Lee, B.-J., et al., Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry, 2010. 122(1): p. 271-276.
53. Tan, L., et al., Simultaneous Determination of γ‐Aminobutyric Acid and Glutamate in Human Gastric Mucosa by HPLC, as their Phenylisothiocyanate Derivatives. Journal of liquid chromatography & related technologies, 2006. 29(1): p. 45-53.
54. Zanjani, M.A.K., et al., Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iranian journal of pharmaceutical research: IJPR, 2014. 13(3): p. 843.
55. Mokarram, R., et al., The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 2009. 42(8): p. 1040-1045.
56. Brinques, G.B. and M.A.Z. Ayub, Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of food engineering, 2011. 103(2): p. 123-128.
57. Ratanaburee, A., et al., Selection of γ‐aminobutyric acid‐producing lactic acid bacteria and their potential as probiotics for use as starter cultures in T hai fermented sausages (N ham). International Journal of Food Science & Technology, 2013. 48(7): p. 1371-1382.
58. Thwe, S.M., et al., Isolation, characterization, and utilization of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Myanmar fishery products fermented with boiled rice. Fisheries Science, 2011. 77(2): p. 279-288.
59. Kim, S.-H., et al., Cloning and expression of a full-length glutamate decarboxylase gene fromLactobacillus brevis BH2. Biotechnology and Bioprocess Engineering, 2007. 12(6): p. 707-712.
60. Dhakal, R., V.K. Bajpai, and K.-H. Baek, Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 2012. 43(4): p. 1230-1241.
61. Wu, Q. and N.P. Shah, Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria. Journal of dairy science, 2015. 98(2): p. 790-797.
62. Zhang, Y., et al., The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Applied microbiology and biotechnology, 2012. 94(6): p. 1619-1627.
63. Li, H., et al., Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microbial cell factories, 2010. 9(1): p. 85.
64. Komatsuzaki, N., et al., Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Bioscience, biotechnology, and biochemistry, 2008. 72(2): p. 278-285.
65. Diana, M., et al., Spanish cheese screening and selection of lactic acid bacteria with high gamma-aminobutyric acid production. LWT-Food Science and Technology, 2014. 56(2): p. 351-355.
66. Li, R., et al., Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. Journal of controlled release, 2016. 230: p. 79-87.
67. Capela, P., T. Hay, and N. Shah, Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 2006. 39(2): p. 203-211.
68. Nazzaro, F., et al., Fermentative ability of alginate-prebiotic encapsulated Lactobacillus acidophilus and survival under simulated gastrointestinal conditions. Journal of Functional Foods, 2009. 1(3): p. 319-323.
69. Chen, K.N., et al., Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of food science, 2005. 70(5): p. M260-M266.