اثر دمای طولانی مدت بر روی فعالیت ضداکسایشی، ترکیبات فنولی و رنگ عسل گونه یونجه ایرانی: تجزیه و تحلیل سینتیکی

نویسندگان
1 دانشجوی دکتری، شیمی مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.
2 استادیار، شیمی مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.
چکیده


در این مطالعه سینتیک تغییرات فعالیت ضداکسایشی کل توسط ارزیابی رادیکال DPPH، تشکیل رنگدانه قهوه­ای (BPF) و فنول کل با معرف فولین-سیوکالتیو در عسل یونجه حرارت دیده در دماهای مختلف (45، 55 و 65 درجه سانتیگراد) طی 10 روز مورد بررسی قرار گرفت. نتایج نشان داد میزان فعالیت ضداکسایشی، BPF و مقدار فنول کل با افزایش دما و زمان روند افزایشی دارند. همچنین بررسی سینتیک تغییرات BPF و فنول کل نشان داد که این پارامترها از سینتیک مرتبه صفر پیروی می­کنند و مقدار انرژی فعال سازی به ترتیب 1/86 و 7/71 کیلوژول بر مول در 45-65 درجه سانتیگراد به دست آمد. با این حال، به دلیل تنوع فعالیت ضداکسایشی در دماهای مختلف، سینتیک مرتبه دوم، مرتبه اول و مرتبه صفر به ترتیب در دماهای 45، 55 و 65 درجه سانتیگراد بدست آمد. حرارت دادن عسل در 65 درجه سانتی گراد موثرتر از 45 و 55 درجه سانتیگراد برای هر سه پارامتر بود. نتایج نشان داد که فعالیت ضداکسایشی با افزایش هر دو فاکتور قهوه­ای شدن و فنول کل نمونه در ارتباط بود و همچنین با افزایش قهوه­ای شدن مقدار فنول کل افزایش می­یابد به طوریکه بیشترین مقدار فنول مربوط به تیره ترین نمونه عسل است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of long-term temperature on antioxidant activity, phenolic compounds and honey color of Iranian alfalfa: Kinetic analysis

نویسندگان English

mohammad Molaveisi 1
adel beigbabaei 2
ehsan akbari 1
mostafa shahidi 2
1 Research Institute of Food Science and Technology
2 Research Institute of Food Science and Technology
چکیده English

In this study, the kinetics of total antioxidant activity changes by DPPH radical evaluation, brown pigment formation (BPF), and phenol total with folin–ciocalteu reagent intestinal tract in heated alfalfa honey at different temperatures (45, 55 and 65 °C) over a period of 10 days it placed. The results showed that the amount of antioxidant activity, BPF, and total phenol content increased with increasing temperature and time. Also, the kinetics of changes in BPF and total phenol showed that these parameters follow zero-order kinetics and the activation energy was 86.1 and 71.7 kJ / mol, respectively, at 45-65 °C. However, due to the diversification of antioxidant activity at different temperatures, second order, first order, and zero order kinetics were obtained at 45, 55 and 65 ° C, respectively. Honey heating at 65 ° C was more effective than 45 ° C and 55 ° C for all three parameters. The results showed that antioxidant activity was associated with an increase in both browning factors and total phenol, and also with increasing brown pigment formation, the total phenol content increased so that the highest amount of phenol was related to the darkest honey sample.

کلیدواژه‌ها English

Kinetics
Honey alfalfa
Antioxidant
Total Phenol
Akhmazillah, M., Farid, M. & Silva, F. (2013). High pressure processing (HPP) of honey for the improvement of nutritional value. Innovative Food Science & Emerging Technologies, 20, 59-63.
Aljadi, A. & Kamaruddin, M. (2004). Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry, 85, 513-518.
Anese, M., Manzocco, L., Nicoli, M. C. & Lerici, C. R. (1999). Antioxidant properties of tomato juice as affected by heating. Journal of the Science of Food and Agriculture, 79, 750-754.
Beretta, G., Granata, P., Ferrero, M., Orioli, M. & Facino, R. M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533, 185-191.
Blasa, M., Candiracci, M., Accorsi, A., Piacentini, M. P., Albertini, M. C. & Piatti, E. (2006). Raw Millefiori honey is packed full of antioxidants. Food Chemistry, 97, 217-222.
Bozkurt, H., Göğüş, F. & Eren, S. (1999). Nonenzymic browning reactions in boiled grape juice and its models during storage. Food Chemistry, 64, 89-93.
Carabasa-Giribet, M. & Ibarz-Ribas, A. (2000). Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering, 44, 181-189.
Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O. & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food chemistry, 196, 309-323.
Elliott, J. G. (1999). Application of antioxidant vitamins in foods and beverages: Developing nutraceuticals for the new millenium. Food Technology, 53, 46-48.
Fallico, B., Zappala, M., Arena, E. & Verzera, A. (2004). Effects of conditioning on HMF content in unifloral honeys. Food Chemistry, 85, 305-313.
Ferreres, F., Ortiz, A., Silva, C., Garcia-Viguera, C., Tomás-Barberán, F. A. & Tomás-Lorente, F. (1992). Flavonoids of “La Alcarria” honey A study of their botanical origin. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 194, 139-143.
Garza, S., Ibarz, A., Pagan, J. & Giner, J. (1999). Non-enzymatic browning in peach puree during heating. Food research international, 32, 335-343.
Gil, M. I., Ferreres, F., Ortiz, A., Subra, E. & Tomas-Barberan, F. A. (1995). Plant phenolic metabolites and floral origin of rosemary honey. Journal of Agricultural and Food Chemistry, 43, 2833-2838.
Giovanelli, G. & Lavelli, V. (2002). Evaluation of heat and oxidative damage during storage of processed tomato products. I. Study of heat damage indices. Journal of the Science of Food and Agriculture, 82, 1263-1267.
Gorjanović, S. Ž., Alvarez-suarez, J. M., Novaković, M. M., Pastor, F. T., Pezo, L., Battino, M. & Sužnjević, D. Ž. (2013). Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays. Journal of food composition and analysis, 30, 13-18.
Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & therapeutics, 96, 67-202.
Hussein, S. Z., Yusoff, K. M., Makpol, S. & Yusof, Y. A. M. (2011). Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey. Molecules, 16, 6378-6395.
Ibarz, A., Pagan, J. & Garza, S. (2000). Kinetic models of non‐enzymatic browning in apple puree. Journal of the Science of Food and Agriculture, 80, 1162-1168.
Jahan, N., Islam, M. A., Alam, F., Gan, S. H. & Khalil, M. I. (2015). Prolonged heating of honey increases its antioxidant potential but decreases its antimicrobial activity. African Journal of Traditional, Complementary and Alternative Medicines, 12, 134-144.
Jaiswal, V., Dermarderosian, A. & Porter, J. R. (2010). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food Chemistry, 118, 11-16.
Jasicka-Misiak, I., Poliwoda, A., Dereń, M. & Kafarski, P. (2012). Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chemistry, 131, 1149-1156.
Jimoh, F., Adedapo, A., Aliero, A. & Afolayan, A. (2008). Polyphenolic Contents and Biological Activities of Rumex ecklonianus. Pharmaceutical Biology, 46, 333-340.
Khalil, M. I., Moniruzzaman, M., Boukraâ, L., Benhanifia, M., Islam, M. A., Islam, M. N., SULAIMAN, S. A. & GAN, S. H. (2012). Physicochemical and antioxidant properties of Algerian honey. Molecules, 17, 11199-11215.
Koca, I. & Karadeniz, B. (2009). Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae, 121, 447-450.
Kusznierewicz, B., Śmiechowska, A., Bartoszek, A. & Namieśnik, J. (2008). The effect of heating and fermenting on antioxidant properties of white cabbage. Food chemistry, 108, 853-861.
Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. ACS Publications.
Mantell, C., Rodrıguez, M. & De La Ossa, E. M. (2002). Semi-batch extraction of anthocyanins from red grape pomace in packed beds: experimental results and process modelling. Chemical Engineering Science, 57, 3831-3838.
Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C. & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in food science & technology, 11, 340-346.
Martos, I., Cossentini, M., Ferreres, F. & Tomás-Barberán, F. A. (1997). Flavonoid composition of Tunisian honeys and propolis. Journal of Agricultural and Food Chemistry, 45, 2824-2829.
Meda, A., Lamien, C. E., Romito, M., Millogo, J. & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91, 571-577.
Morales, F. J. & Jiménez-Pérez, S. (2001). Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food chemistry, 72, 119-125.
Morales, F. J. & Jiménez-Pérez, S. (2004). Peroxyl radical scavenging activity of melanoidins in aqueous systems. European Food Research and Technology, 218, 515-520.
Nicoli, M. C., Anese, M., Parpinel, M. T., Franceschi, S. & Lerici, C. R. (1997). Loss and/or formation of antioxidants during food processing and storage. Cancer letters, 114, 71-74.
Patil, G., Madhusudhan, M., Babu, B. R. & Raghavarao, K. (2009). Extraction, dealcoholization and concentration of anthocyanin from red radish. Chemical Engineering and Processing: Process Intensification, 48, 364-369.
Peterson, J. & Dwyer, J. (1998). Flavonoids: dietary occurrence and biochemical activity. Nutrition Research, 18, 1995-2018.
Ritzoulis, C. (2013). Introduction to the physical chemistry of foods, CRC Press.
Sant'ana, L. D. O., Buarque ferreira, A. B., Lorenzon, M. C. A., Berbara, R. L. L. & Castro, R. N. (2014). Correlation of total phenolic and flavonoid contents of Brazilian honeys with colour and antioxidant capacity. International journal of food properties, 17, 65-76.
Serpen, A., Gökmen, V. & Fogliano, V. (2012). Total antioxidant capacities of raw and cooked meats. Meat science, 90, 60-65.
Socha, R., Juszczak, L., Pietrzyk, S., Gałkowska, D., Fortuna, T. & Witczak, T. (2011). Phenolic profile and antioxidant properties of Polish honeys. International journal of food science & technology, 46, 528-534.
Stratil, P., Klejdus, B. & Kubáň, V. (2006). Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. Journal of agricultural and food chemistry, 54, 607-616.
Suh, H. J., Kim, J. M., Lee, H., Lee, S. W. & Choi, Y. M. (2004). Thermal kinetics on antiradical capacity of mulberry fruit extract. European Food Research and Technology, 219, 80-83.
Tosi, E., Ciappini, M., RE, E. & Lucero, H. (2002). Honey thermal treatment effects on hydroxymethylfurfural content. Food Chemistry, 77, 71-74.
Turkmen, N., Sari, F., Poyrazoglu, E.S. and Velioglu, Y.S., (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95(4), pp.653-657.
Van boekel, M. (2001). Kinetic aspects of the Maillard reaction: a critical review. Molecular Nutrition & Food Research, 45, 150-159.
Wagner, K., Derkits, S., Herr, M., Schuh, W. & Elmadfa, I. (2002). Antioxidative potential of melanoidins isolated from a roasted glucose–glycine model. Food Chemistry, 78, 375-382.
Wong, M. & Stanton, D. (1989). Nonenzymic browning in kiwifruit juice concentrate systems during storage. Journal of Food Science, 54, 669-673.
Yanagimoto, K., Lee, K.-G., Ochi, H. & Shibamoto, T. (2002). Antioxidative activity of heterocyclic compounds formed in Maillard reaction products. International Congress Series, Elsevier, 335-340.
Yu, A.-N., Zhou, Y.-Y. & Yang, Y.-N. (2017). Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems. Food chemistry, 221, 1678-1684.
Zambiazi, R., Jansen, C., Bueno-costa, F., Silva, S. & Hartwig, N. (2016). Bioactive compounds and antioxidant activity of blueberry toppings with honey. International Food Research Journal, 23.
Zumla, A. & Lulat, A. (1989). Honey--a remedy rediscovered. Journal of the Royal Society of Medicine, 82, 384.
Zhang, D., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88(4), 503-509.