انتقال جرم قارچ دکمه ای با امواج فراصوت با پیش فرایند آبگیری اسمزی

نویسندگان
استادیار پژوهش علوم و صنایع غذایی، بخش تحقیقات فنی و مهندسی کشاورزی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد ، ایران
چکیده
قارچ دکمه‌ای نسبت به ضربات مکانیکی، حساسیت زیاد و ماندگاری کم دارد. هدف تعیین روش بهینه آبگیری فراصوتی و بررسی شرایط اسمزی بر میزان انتقال جرم آن بود. در مرحله اول، محلول اسمزی کلرید سدیم با غلظت‌های 6، 9، 12 و 15 درصد، زمان‌های 20،40، 60، 90 و 120 دقیقه و در دماهای 25 و 45 درجه سانتی‌گراد استفاده و در مرحله دوم در شرایط اسمزی 12% ، دمای C° 45 و زمان غوطه وری 60 دقیقه، تیمار فراصوت در دو سطح (یک دقیقه فراصوت-یک دقیقه استراحت و 1 دقیقه فراصوت-4 دقیقه استراحت) با فرکانس 20 کیلو هرتز و شدت صوت 400 وات استفاده و میزان خروج آب، جذب مواد جامد و افت وزنی در قارچ دکمه‌ای، بررسی شدند. نتایج نشان داد با افزایش غلظت محلول اسمزی، میزان انتقال جرم از نمونه افزایش یافت. با افزایش زمان غوطه وری تا 60 دقیقه، انتشار رطوبت از بافت و جذب ماده جامد افزایش یافت. از این زمان، سرعت خروج آب زیاد نبوده و مقدار جذب نمک افزایش یافت. ادامه جذب نمک باعث تشکیل لایه مقاوم در برابر نفوذ و حرکت مواد به دو طرف بافت شد. دمای 45 درجه سانتی‌گراد با تغییر در نفوذپذیری دیواره سلولی و افزایش ضریب نفوذ منجر به افزایش سرعت انتقال جرم شد. نتایج نشان داد بهترین روش اسمزی براساس حداقل جذب نمک و حداکثر خروج آب و افت وزنی، محلول نمکی 12 درصد به مدت 60 دقیقه در دمای 45 درجه که باعث جذب نمک به مفدار83/2 درصد و خروج آب به مقدار 36/29 درصد و افت وزنی 53/24 درصد شد. استفاده از فراصوت با پالس 1 دقیقه نتایج بهتری داشت. در زمان 40 دقیقه باعث جذب نمک به مقدار 93/2% ، خروج آب 23/41% و افت وزنی 30/40% شد. محتوای رطوبت قارچ بعد از تیمار اسمزی و فراصوت به ترتیب به 85 و82 درصد کاهش یافت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Ultrasonic mass transfer button mushroom after osmotic dehydration process

نویسندگان English

Shadi basiri
Farzad Gheybi
Assistant Professor in Food Technology, Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research Center, AREEO, Mashhad, Iran
چکیده English

Button mushroom has sensible to mechanical blows and has low shelf life. The purpose of this project was determining of the optimum method of ultrasonic dehydration and the effect of osmotic processing conditions on mass transfers. In the first step, sodium chloride solution with concentrations 6, 9, 12 and 15%, for 20,40,60,90 and 120 minutes at 25°C and 45°C were used and in the second step, in the constant conditions of salt concentration (12%), immersion time (60 min) and temperature (45°C), the mushroom samples were subjected to ultrasonic wave in two levels (pulse duration time to pulse rest time of 1:1 and 1:4) at frequency of 20 KHz and constant power 400 w, to determine their effect on water loss, solid gain and water reduction. The results showed that, as the concentration of osmotic solution increased, mass transfer from the sample increased. When immersion time was increased to 60 min, solid gain and moisture diffusion increased. After this time, water loss was less increased and solid gain was more increased. Further solid gain created a resistant layer against permeability and solute movements on both sides of tissue. in this process, at temperature of 45 °C, greater the mass transfer rate achieved, mainly due to the increase in cell permeability and permeability coefficient. It was found that salt concentration of 12%, immersion time of 60 min and temperature of 45°C gave the minimum solid gain (2.83%) and maximum water loss (29.36%) and weight reduction (24.53%). Also, the use of ultrasound with pulse ratio of 1:1 in constant osmotic dehydration condition was conducted better results. At 40 min processing time, the solid gain, water loss and weight reduction were 2.93%, 41.23% and 40.30%, respectively.Moisture content of mushrooms after osmotic dehydration and ultrasound treatment reduced to 85 and 82 %, respectively.

کلیدواژه‌ها English

Osmotic dehydration
Ultrasound
button mushroom
mass transfer
1. 1. Kumar A., Singh, M., and Singh, G. 2013. Effect of different pretreatments on the quality of mushrooms during solar drying. Journal of Food Science and Technology. 50: 1 .165-170.
2. FAO. 2013. Statistical Database. Available at http://faostat3.fao.org/download/Q/QC/E
3. Mehta, B. K., Jain, S. K., Sharma, G. P., Mudgal, V. D., Verma, R. C., Doshi, A., and Jain, H. K, 2012. Optimization of osmotic drying parameters for button mushroom (Agaricus bisporus). Applied Mathematics. 3: 1298-1305.
4. Jadhav, H. T., and Chandiwade, U. N. 2008. Effect of pretreatment, drying temperature and intermittent drying technique on cooking quality of oyster mushroom. Agriculture Update. 3 (1/2): 23-26.
5. Mattila, P., Salo-Väänänen, P., Könkö, K., Aro, H., and Jalava, T. 2002. Basic composition and amino acid contents of mushrooms cultivated in Finland. Journal of Agricultural and Food Chemistry. 50 (22): 6419-6422.
6. Angle, R. Y. and Tamhane, D. V. 1974. Mushrooms: An exotic source of nutritious and palatable food. Indian Food Packer. 28 (5): 22-28.
7. Kotwaliwale, N., Bakane, P., and Verma, A. 2007. Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering. 78 (4): 1207-1211.
8. Giri, S. K., and Prasad, S. 2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering. 78 (2): 512-521.
9. Shukla, B. D., and Singh, S. P. 2007. Osmo-convective drying of cauliflower, mushroom and greenpea. Journal of food engineering. 80 (2): 741-747.
10. Jain, S. K., Verma, R. C., Murdia, L. K., Jain, H. K., and Sharma, G. P. 2011. Optimization of process parameters for osmotic dehydration of papaya cubes. Journal of Food Science and Technology. 48 (2), 211-217.
11. Sodhi, N. S., Singh, N. Komal (2006) Osmotic dehydration kinetics of carrots. Journal of Food Science and Technology. 43 (4): 374-376.
12. Dalla Rosa, M., and Giroux, F. 2001. Osmotic treatments (OT) and problems related to the solution management. Journal of Food Engineering. 49(2): 223-236.
13. Prerna, G., Anju, B., Harmeet, C., Naseer, A., Anisa, M, 2015. Osmotic Dehydration of Button Mushroom. International Journal of Food and Fermentation Technology, 5 (2): 177-182.
14. Kumar, K., Barmanray, A., Kumar, S. 2017. Shelf-Life Studies on Osmo-Air Dried White Button Mushroom (Agaricus Bisporus L.). Current Research Nutrition Food Science, 5 (2): 144-153.
15. Mehta, B. K., Kumari, M., Surabhi. Jain, S. K. 2018. Osmotic dehydration as a pre-treatment before hot air drying of mushroom (Agaricus bisporus). International Journal of Current Microbiology and Applied Sciences, 7: 1341-1349.
16. AOAC. 1984. Official methods of analysis. 14th ed. Association of Official Analytical Chemists, Washington, DC, USA.
17. Kar, A., and Gupta, D. K. 2003. Air drying of osmosed button mushrooms. Journal of Food Science and Technology. 40 (1): 23-27.
18. Yadav, B. S., Yadav, R. B., and Jatain, M. 2012. Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. Journal of Food Science and Technology. 49(5): 547-555.
19. Ozen, B. F., Dock, L. L., Ozdemir, M., and Floros, J. D. 2002. Processing factors affecting the osmotic dehydration of diced green peppers. International Journal of Food Science & Technology. 37(5): 497-502.
20. Singh, B., Kumar, A., and Gupta, A. K. 2007. Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. Journal of Food Engineering. 79 (2): 471-480.
21. Fernandes, F. A., Gallão, M. I., and Rodrigues, S. 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT-Food Science and Technology. 41(4): 604-610.
22. Gheybi, F. 2012. Osmotic dehydration of honeydew (Cucumis melo L. var inodorus) using high power ultrasonic treatment (Doctoral dissertation, Universiti Putra Malaysia).
23. Park, K. J., Bin, A., Brod, F. P. R., and Park, T. H. K. B. 2002. Osmotic dehydration kinetics of pear D'anjou (Pyrus communis L.). Journal of Food Engineering. 52 (3): 293-298.
24. Asghari, B. Z. and Basiri, A. R. 2010. Optimization of Osmo-Convective Drying of Edible Button Mushroom Using Response Surface Methodology. Food Technology and Nutrition. 7: 2. 39-50. (In Persian)
25. Rezagah, M. E., Kashaninezhad, M., Mirzaei, H. E., and Khomeiri, M. (2009). Effect of temperature, osmotic solution concentration and mass ratio on kinetics of osmotic dehydration of button mushroom (Agaricus bisporus). Journal of Agricultural Sciences and Natural Resources, 16: (1-A). (In Persian)
26. Eren, İ., and Kaymak-Ertekin, F. 2007. Optimization of osmotic dehydration of potato using response surface methodology. Journal of Food Engineering. 79 (1): 344-352.
27. Jokic, A., Gyura, J., Levic, L., and Zavargó, Z. 2007. Osmotic dehydration of sugar beet in combined aqueous solutions of sucrose and sodium chloride. Journal of Food Engineering. 78 (1): 47-51.
28. Eshraghi, E., Kashaninejad, M., Maghsoudlou, Y., Beiraghi, T. Sh. and Alami, M. 2014. Studying the Effect of Osmosis-Ultrasound Compound Pre-treatment on Drying Kiwi Fruit Sheets. Iranian Food Science & Technology Research Journal. 9: 4. 2228-5415. (In Persian)
29. Fernandes, F. A., Gallão, M. I., and Rodrigues, S. 2009. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering. 90 (2): 186-190.
30. Rodrigues, S., Gomes, M. C., Gallão, M. I., and Fernandes, F. A. 2009. Effect of ultrasound‐assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture. 89 (4): 665-670.