تخلیص آنزیمی صمغ دانه بالنگو (Lallemantia royleana) و بررسی ویژگی های فیزیکوشیمیایی و امولسیون کنندگی آن

نویسندگان
1 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران1
2 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
3 گروه نانو فناوری مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران
چکیده
صمغ­ها گروهی از ترکیبات پلی­ساکاریدی با زنجیره طولانی یا وزن مولکولی بالا هستند که به­طور گسترده­ای در مواد غذایی و سایر صنایع به عنوان تثبیت کننده، اصلاح کننده بافت، قوام­دهنده، تشکیل دهنده ژل و امولسیفایر به­کار برده می­شوند. هدف از این پژوهش، شناسایی خواص فیزیکوشیمیایی و امولسیونی صمغ دانه بالنگو فاقد پروتئین می­باشد. نتایج نشان داد، وزن مولکولی صمغ دانه بالنگو و نمونه فاقد پروتئین به ترتیب 3120 و 3360 kDa است. گروه­های عمده­ عملکردی شناسایی شده در طیف FTIR از صمغ دانه بالنگو و نمونه فاقد پروتئین آن شامل O-H، C-H، C=O، -COO- و C-O-C بود. نتایج حاصل از GC-MS نشان داد، منوساکاریدهای مشخص شده در صمغ دانه بالنگو و نمونه فاقد پروتئین آن شامل گلوکز، گالاکتوز، آرابینور، زایلوز و رامنوز بود. براساس نتایج رئولوژیکی، نمونه فاقد پروتئین صمغ بالنگو کمترین میزان پروتئین را دارا بود و این منجر به بزرگ شدن قطرات و پایداری کمتر امولسیون گردید. برازش داده­های رئولوژیکی امولسیون با مدل هرشل-بالکی نشان داد، ضریب تبیین (2R) بسیار نزدیک به 1 بود و خطای جذر میانگین مربعات RMSE)) کمتر از 4/0 بدست آمد، که نشان از مناسب بودن این مدل برای توصیف رفتار جریان امولسیون­های تولیدی دارد. همچنین شاخص رفتار جریان امولسیون­ها کمتر از 1 بود، که تاییدکننده رفتار تضعیف­شونده با برش امولسیون­ها است، اما تفاوت معنی­داری بین امولسیون­ها مشاهده نشد (P>0.05). در آزمون تنش متغیر، تمامی امولسیون­ها، مقدار مدول ذخیره بیشتر از مدول اتلاف بود که غالب بودن رفتار الاستیک را نشان می­دهد. در آزمون فرکانس متغیر، تمامی نمونه­های امولسیون میزان مدول ذخیره بیشتر از مدول اتلاف بود که رفتار شبه جامد امولسیون­ها را تایید می­کند. شاخص­ قانون توان در مدول ذخیره امولسیون صمغ بالنگو و نمونه فاقد پروتئین آن نزدیک به صفر بود که بیانگر رفتار الاستیک قوی­تر در امولسیون است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Enzymatic purification of Balangu seed (Lallemantia royleana) gum and evaluation of its physicochemical and emulsifying properties

نویسندگان English

Maryam Sardarodiyan 1
Akram Arianfar 2
Ali Mohamadi Sani 2
Sara Naji-Tabasi 3
1 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
2 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
3 Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), POBox: 91895-157.356, Mashhad, Iran
چکیده English

Gums are long chain polysaccharides components with high molecular weight wildly used in the food and many other industries as stabilizer, texture modifier, gelling agent, thickener and emulsifier. The aim of this study was to investigation evaluation of physicochemical and emulsifying properties of protein-free balangu seed (Lallemantia royleana) gum. The results showed, balangu and protein-free balangu were obtained from molecular weight 3120 and 3360 kDa, respectively. Major functional groups were identified from FTIR spectrum of balangu and protein-free balangu, include O-H, C-H, C=O, -COO-, and C-O-C. The results of GC-MS showed that the major monosaccharides specified in Glucose, Galactose, Arabinose, Xylose and Rhamnose. According to the rheological protein-free balangu had the lowest protein content and this led to formation of large oil droplet size and lower emulsion stability. The parameters of Herschel–Bulkley model were showed, the values of coefficients of determinations (R2) were near to 1 and Root Mean Square Error (RMSE) values were lower than 0.4, which indicate the suitability of this model to describe the flow behaviour of samples. Moreover all emulsions represented flow behaviour index values less than 1, which reveals shear thinning behaviour of emulsions, but no significant difference was found between emulsions (p>0.05). On amplitude sweep test, the storage modulus values were greater than loss modulus values in all emulsions, which indicates their elastic behaviour. On frequency sweep test, the storage modulus values were greater than loss modulus values in all emulsions, which confirmed solid like behavior. The indices of power law’s storage modulus balangu and protein-free balangu emulsions had near to zero which reflect high elastic behaviour of emulsion.

کلیدواژه‌ها English

Balangu seed
Protein-free
Viscoelastic
FTIR
GC-MS
[1] Farahnaky, A., Bakhshizadeh-Shirazi, Sh., Mesbahi, Gh., Majzoobi, M., Rezvani, E. and Schleining, G. 2013. Ultrasound-assisted isolation of mucilaginous hydrocolloids from Salvia macrosiphon seeds and studying their functional properties. Innovative Food Science and Emerging Technologies, http://dx.doi.org/10.1016/j.ifset.2013.06.003.
[2] Amid, B. T. and Mirhosseini, H. 2012. Influence of different purification and drying methods on rheological properties and viscoelastic behaviour of durian seed gum. Carbohydrate Polymers, 90: 452– 461.
[3] Dickinson, E. 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17: 25-39.
[4] Razavi, S. M. A., Mohammadi Moghaddam, T., Emadzadeh, B. and Salehi F. 2012. Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 29: 205-210.
[5] Naghibi, F., Mosaddegh, M., Mohammadi Motamed, S. and Gorbani, A. 2005. Labiatae family in folk medicine in Iran: from etnobotany to pharmacology. Iranian Phamaceutical Research, 2: 63-79
[6] Razavi, M. and Karazhiyan, H. 2009. Flow properties and thixotropy of selected hydrocolloids: experimental and modelling studies. Food hydrocolloids, 23: 908-912.
[7] Mohammad Amini, A. 2007. Extraction optimization of Balangu seed gum and effect of Balangu seed gum on the rheological and sensory properties of Iranian flat bread, MSc. thesis, Ferdowsi University of Mashhad, Iran.
[8] Farhadi, F. 2017. Structural elucidation of a water-soluble polysaccharide isolated from Balangu shirazi (Lallemantia royleana) seeds. Food Hydrocollids, 72: 263-270.
[9] Amin, GH. 2006. Popular medicinal plants of Iran. Official Website of Tehran University of Medical Sciences, Tehran, p 60.
[10] Mirhaydr, H. 1985. Plant Sciences (application of plants in the prevention and treatment of diseases). Volume III, First Edition.
[11] Francuskiewicz, F. 1994. Polymer fractionation. Springer.
[12] AOAC. 2005. Official methods of analysis of AOAC International. AOAC International.
[13] Jahanbin, K. 2011. Extraction, identification and structural characterization of the main water-soluble polysaccharide from Acanthophyllum bracteatum root. Ph.D thesis in Food Science and Technology , Faculty of Agriculture, Tehran University.
[14] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28: 350-356.
[15] Blumenkrantz, N. and Asboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Analytical biochemistry, 484-9.
[16] Wolfrom, M. and Thompson, A. 1963. (20) Reduction with Sodium Borohydride. Methods in carbohydrate chemistry, Vol. II: reactions of carbohydrates, 65-67.
[17] Simas-Tosin, F., Wagner, R., Santos, E., Sassaki, G., Gorin, P. and Iacomini, M. 2009. Polysaccharide of nectarine gum exudate: Comparison with that of peach gum. Carbohydrate Polymers, 76(3): 485-487.
[18] Mohammad Amini, A. and Razavi, S. 2012. Dilute solution properties of Balangu (Lallemantia royleana) seed gum: Effect of temperature, salt, and sugar. International journal of biological macromolecules, 51: 235-243.
[19] Naji-Tabasi, S. and Razavi. S.M.A. 2016. New studies on basil (Ocimum bacilicum L.) seed gum: Part II—Emulsifying and foaming characterization. Carbohydrate Polymers. 149: 140–150.
[20] Naji, S., Razavi, S. and Karazhiyan, H. 2012. Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids. 28: 75-81.
[21] Naji-Tabasi, S. and Mohebbi, M. 2015. Evaluation of cress seed gum and xanthangum effect on macrostructure properties of gluten-free bread by imageprocessing. Journal of Food Measurement and Characterization. 9: 110–119.
[22] Osano, J. P., Hosseini-Parvar, S. H., Matia-Merino, L. and Golding, M. 2014. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocolloids, 37: 40-48.
[23] Naji-Tabasi, S. and Razavi, S.M.A. 2015. New studies on basil (Ocimum bacilicum L.) seed gum: part III–Steady and dynamic shear rheology. Food Hydrocolloids. [in press].
[24] Brummer, Y., Cui, S.W. 2005. Food Carbohydrates: Chemistry, Physical Prpperties and Application. CRC Press, Boca Raton, FL, 67-104.
[25] Cui, W. and Mazza, G. 1996. Physicochemical characteristics of flaxseed gum. Food Research International. 29(3-4): 397-402.
[26] Balaghi, S. 2015. Development of Rheo-Additives and their Applications in Food Technology. epubli.
[27] Jahanbin, K., Moini, S., Gohari, A. R., Emam-Djomeh, Z. and Masid, P. 2012. Isolation, purification and characterization of a new gum from Acanthophyllum bracteatum roots. Food Hydrocolloids, 27: 14-21.
[28] Malsawmtluangi, C., Thanzami, K., Lalhlenmawia, H., Selvan, V., Palanisamy, S., Kandasamy, R. and Pachuau, L. 2014. Physicochemical characteristics and antioxidant activity of Prunus cerasoides D. Don gum exudates. International Journal of Biological Macromolecules, 69: 192–199.
[29] Farahnaki, A., Askari, H. and Bakhtiari, M. 2011. An Investigating of Some Rheological Properties of Garden Cress Seed Mucilage. 42(1): 113-120.
[30] Razavi, S.M.A., Cui, S. and Ding, H. 2013. Physicochemical characteristics of Balangu (Lallemantia royleana) seed gum, in press.
[31] Tabarsa M., Han J. H., Kim C.Y. and You S.G. 2012. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa, Journal of medicinal food, 15(2): 135-144.
[32] Guo, Q., Cui, S. W., Wang, Q., Hu, X., Guo, Q., Kang, J. and Yada, R. 2011. Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 86: 831-836.
[33] Karazhiyan, H., Razavi, S., Phillips, G. O., Fang, Y., Al‐Assaf, S. and Nishinari, K. 2011. Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. International Journal of Food Science & Technology, 46: 1066-1072.
[34] Goormaghtigh, E., Ruysschaert, J.-M. and Raussens, V. 2006. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophysical journal, 90: 2946-2957.
[35] Kong, F., Zhang, M., Liao, S., Yu, S., Chi, J. and Wei, Z. 2010. Antioxidant activity of polysaccharide-enriched fractions extracted from pulp tissue of Litchi Chinensis sonn. Molecules, 15: 2152-2165.
[36] Naji-Tabasi, S., Razavi, S.M.A., Mohebbi, M. and Malaekeh-Nikouei, B. 2016. New studies on basil (Ocimum bacilicum L.) seed gum: Part I -Fractionation, physicochemical and surface activity characterization. Food Hydrocolloids, 52: 350-358.
[37] Faria, S., de Oliveira Petkowicz, C. L., de Morais, S. A. L., Terrones, M. G. H., de Resende, M. M., de França, F. P. and Cardoso, V. L. 2011. Characterization of xanthan gum produced from sugar cane broth. Carbohydrate Polymers, 86: 469-476.
[38] Harding, S. E. and Adams, G. G. 2002. An introduction to polysaccharide biotechnology.CRC Press.
[39] Imeson, A. 2011. Food stabilisers, thickeners and gelling agents. John Wiley & Sons.
[40] Milani, J. and Maleki, G. 2012. Hydrocolloids in food industry. INTECH Open Access Publisher.
[41] Karazhiyan, H., Razavi, S., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K. and Farhoosh, R. 2009. Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food hydrocolloids, 23: 2062-2068.
[42] Razavi, S. M. A., Cui, S. W., Guo, Q. and Ding, H. 2014. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 35: 453-462.
[43] Hesarinejad, M. A., Razavi, S. M. and Koocheki, A. 2015. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. International journal of biological macromolecules, 81: 418-426.
[44] Dickinson, E., Murray, B. S., Stainsby, G. and Anderson, D. M. 1988. Surface activity and emulsifying behaviour of some Acacia gums. Food Hydrocolloids, 2: 477- 490.
[45] Randall, R., Phillips, G. and Williams, P. 1988. The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocolloids, 2: 131-140.
[46] Osman, A., Osman, M., Hassan, E., Al-Assaf, S., Andres-Brull, M. and Phillips, G. 2011. Characterisation, Fractionation and Emulsification Properties of Acacia Polyacantha Gums.
[47] Song, K.-W., Kim, Y.-S. and Chang, G.-S. 2006. Rheology of concentrated xanthan gumsolutions: Steady shear flow behavior. Fibers and Polymers, 7: 129-138.
[48] Hosseini-Parvar, S., Matia-Merino, L., Goh, K., Razavi, S. and Mortazavi, S. 2010. Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of food engineering, 101: 236-243.
[49] McClements, D. J. 2004. Food emulsions: principles, practices, and techniques. CRC press.
[50] Mandala, I., Savvas, T. and Kostaropoulos, A. 2004. Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. Journal of Food Engineering, 64: 335-342.
[51] Hidalgo-Álvarez, R. 2009. Structure and functional properties of colloidal systems. CRC Press.