بکارگیری لاکتیک اسید باکتری ها برای کنترل بیولوژیکی فساد قارچی مواد غذایی؛ متابولیت ها، مکانیسم و اثرات سلامت بخشی

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه ارومیه، ایران
2 دانشیار گروه علوم و صنایع غذایی، دانشکده علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
فساد قارچی مواد غذایی نقشی اساسی در تخریب مواد غذایی و ایجاد بیماری­های ناشی از مواد غذایی (foodborne diseases) بازی می­کند. علاوه بر این تولید مایکوتوکسین­های مختلف­ بوسیله قارچ­ها می­تواند باعث بروز خطرات جدی نظیر سرطان­زایی، تراتوژنی ،ایمونو توکسیک، نوروتوکسیک، نفروتوکسیک، مایکوتوکسیکوزیس و بیماری کاشین­ بک برای سلامتی شود. از طرفی با وجود افزایش مقاومت کپک­ها به نگهدارنده­های سنتزی و امکان تولید مواد سرطان­زایی نظیر نیتروزآمین­ها در غذاها تا به حال استراتژی موثری جهت کاهش مطمئن رشد میکروبی برای سلامت عمومی پیشنهاد نشده است. لذا با توجه به ایمن بودن و خاصیت سلامت بخشی لاکتیک اسید باکتری­ها که مورد تایید قرا گرفته است (GRAS و QPS)، می­توان از آنها به عنوان نگهدارنده­های طبیعی برای جلوگیری از فساد قارچی مواد غذایی استفاده نمود. قابلیت جلوگیری و مهارکنندگی فساد قارچی بوسیله لاکتیک اسید باکتری­ها، عمدتا به علت تولید ترکیبات ضد میکروبی نظیر اسیدهای آلی، اسید­های چرب، پراکسید هیدروژن، فنیل لاکتیک اسید، دی پپتید­های حلقوی، ترکیبات پروتئینی، دی استیل، باکتریوسین­ها و رئوترین می­باشد. همچنین از مهم ترین مکانیسم­های مهارکنندگی لاکتیک اسید باکتری­ها علیه عوامل فساد قارچی مواد غذایی می توان به ناپایداری و نفوذ پذیری دیواره سلولی، تداخل شیب پروتون، استرس اکسیداتیو و بازدارندگی آنزیمی اشاره نمود. لذا در این مقاله سعی شده است که مروری اجمالی بر متابولیت­های ضد قارچی و ساختار شیمیایی آن­ها، مکانیسم بازدارندگی و خواص سلامت بخشی لاکتیک اسید باکتری­ها صورت گیرد
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of lactic lacid bacteria to biological control of fungal spoilage in food; metabolites, mechanisms and health effects

نویسندگان English

Ahmad Nasrollahzadeh 1
Morteza Khomeiri 2
1 Department of Food Science and Technology, Urmia.Iran
2 Associate Professor of Food Science and Technology, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan.
چکیده English

Fungal spoilage plays an essential role in the deterioration of food and in the creation of foodborne disease. In addition, the production of various mycotoxins by fungi can cause serious dangers such as carcinogenic, teratogenic, immunotoxic, neuromastoxic, toxic dead, mycotoxicosis and Kashin Beck disease. On the other hand, despite the increasing resistance of molds to synthetic preservatives, that may produce carcinogenic nitrosamine, no effective strategy has been proposed to safely reduce of microbial growth for public health. Therefore, due to the safe and probiotic properties of the lactic acid bacteria that have been approved (GRAS and QPS), can be used as natural preservatives to prevent fungal spoilage of food. The ability to prevent and inhibitory fungal spoilage by lactic acid bacteria is mainly due to the production of antimicrobial compounds such as organic acids, fatty acids, hydrogen peroxide, phenyllactic acid, cyclic delpeptide, proteinaceous compounds, diacetyl, bacteriocin and reuterin. Also, the most important inhibitory mechanisms of lactic acid bacteria against fungal corruption include membrane destabilization, proton gradient interference, enzyme inhibition, and creation of reactive oxygen species. Therefore, in this paper, it has been tried to overview of antifungal metabolites and their chemical structure, inhibitory mechanisms and probiotic properties of the lactic acid bacteria.

کلیدواژه‌ها English

Fungal spoilage
Mycotoxin
lactic acid bacteria
Natural preservatives
Metabolites
Mechanism
[1]. Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. International journal of food microbiology. 2014;173:30-5.
[2]. Muhialdin BJ, Hassan Z. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. American Journal of Applied Sciences. 2011;8(5):447.
[3]. Pawlowska AM, Zannini E, Coffey A, Arendt EK. 5" Green Preservatives": Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Advances in food and nutrition research. 2012;66:217.
[4]. Rouse S, Harnett D, Vaughan A, Sinderen Dv. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology. 2008;104(3):915-23.
[5]. Yang E, Chang H. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International journal of food microbiology. 2010;139(1):56-63.
[6]. Schnürer J, Magnusson J. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology. 2005;16(1):70-8.
[7]. Sengun I, Yaman D, Gonul S. Mycotoxins and mould contamination in cheese: a review. World Mycotoxin Journal. 2008;1(3):291-8.
[8]. Gerez C, Torres M, de Valdez GF, Rollán G. Control of spoilage fungi by lactic acid bacteria. Biological Control. 2013;64(3):231-7.
[9]. Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology. 2004;15(2):67-78.
[10]. Zhang J, Wang X-J, Yan Y-J, Jiang L, Wang J-D, Li B-J, et al. Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity. Bioresource technology. 2010;101(21):8383-8.
[11]. Li H, Zhang S, Lu J, Liu L, Uluko H, Pang X, et al. Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control. 2014;43:57-64.
[12]. Soomro A, Masud T, Kiran A. Role of lactic acid bacteria (LAB) in food preservation and human health–a review. Pakistan Journal of Nutrition. 2002.
[13]. Fernandes C, Shahani K, Amer M. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiology Reviews. 1987;3(3):343-56.
[14]. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States—unspecified agents. Emerging infectious diseases. 2011;17(1):16.
[15]. CDC. Incidence and trends of foodborne illness,2011. Centers for Disease Control and Prevention. 2013.
[16]. Upadhayay UPPDD, Evum PCVVV. Food—home Pathogens of Animal Origin—Diagnosis, Prevention, Control and Their Zoonotic Significance: A Review. Pakistan Journal of Biological Sciences. 2013;16(20):1076-85.
[17]. Control CfD, Prevention. Multistate outbreak of Salmonella serotype typhimurium infections associated with drinking unpasteurized milk--Illinois, Indiana, Ohio, and Tennessee, 2002-2003. MMWR Morbidity and mortality weekly report. 2003;52(26):613.
[18]. Control CfD, Prevention. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food--selected sites, United States, 2003. MMWR Morbidity and mortality weekly report. 2004;53(16):338.
[19]. Oliver S, Jayarao B, Almeida R, editors. Foodborne pathogens, mastitis, milk quality, and dairy food safety. NMC Annual Meeting Proceedings; 2005.
[20]. Rocourt J, Moy G, Vierk K, Schlundt J. The present state of foodborne disease in OECD countries. Geneva: WHO. 2003;1.
[21]. Medeiros LC, Hillers VN, Kendall PA, Mason A. Food safety education: what should we be teaching to consumers? Journal of Nutrition Education. 2001;33(2):108-13.
[22]. Holzapfel WH, Schillinger U. Introduction to pre-and probiotics. Food Research International. 2002;35(2):109-16.
[23]. Food J, Group AOWHOW. Guidelines for the evaluation of probiotics in food. London, Ont, Canada: Joint FAO/WHO Working Group. 2002;30.
[24]. da Cruz AG, Buriti FCA, de Souza CHB, Faria JAF, Saad SMI. Probiotic cheese: health benefits, technological and stability aspects. Trends in Food Science & Technology. 2009;20(8):344-54.
[25]. Reid G. Probiotics and prebiotics–progress and challenges. International Dairy Journal. 2008;18(10):969-75.
[26]. Holzapfel WH, Haberer P, Snel J, Schillinger U, in't Veld JHH. Overview of gut flora and probiotics. International journal of food microbiology. 1998;41(2):85-101.
[27]. Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. The American journal of clinical nutrition. 2001;73(2):365s-73s.
[28]. Singh K, Kallali B, Kumar A, Thaker V. Probiotics: A review. Asian Pacific Journal of Tropical Biomedicine. 2011;1(2):S287-S90.
[29]. Conway PL. Selection criteria for probiotic microorganisms. Asia Pacific Journal of Clinical Nutrition. 1996;5:10-4.
[30]. Ljungh A, Wadstrom T. Lactic acid bacteria as probiotics. Current issues in intestinal microbiology. 2006;7(2):73-90.
[31]. Shah NP. Functional cultures and health benefits. International Dairy Journal. 2007;17(11):1262-77.
[32]. Da Cruz AG, Faria JdAF, Saad SMI, Bolini HMA, Sant AS, Cristianini M. High pressure processing and pulsed electric fields: potential use in probiotic dairy foods processing. Trends in food science & technology. 2010;21(10):483-93.
[33]. Nagpal R, Yadav H, Puniya A, Singh K, Jain S, Marotta F. Potential of probiotics and prebiotics for synbiotic functional dairy foods: an overview. International Journal of Probiotics and Prebiotics. 2007;2(2/3):75.
[34]. Fallah AA, Jafari T, Fallah A, Rahnama M. Determination of aflatoxin M1 levels in Iranian white and cream cheese. Food and chemical toxicology. 2009;47(8):1872-5.
[35]. Torkar KG, Vengušt A. The presence of yeasts, moulds and aflatoxin M 1 in raw milk and cheese in Slovenia. Food Control. 2008;19(6):570-7.
[36]. Nielsen MS, Frisvad JC, Nielsen PV. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese. International journal of food microbiology. 1998;42(1):91-9.
[37]. Filtenborg O, Frisvad JC, Thrane U. Moulds in food spoilage. International journal of food microbiology. 1996;33(1):85-102.
[38]. Lund F, Filtenborg O, Frisvad J. Associated mycoflora of cheese. Food Microbiology. 1995;12:173-80.
[39]. Pitt J. Toxigenic fungi: which are important? Medical mycology. 2000;38(s1):17-22.
[40]. Voulgari K, Hatzikamari M, Delepoglou A, Georgakopoulos P, Litopoulou-Tzanetaki E, Tzanetakis N. Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Control. 2010;21(2):136-42.
[41]. Davidson P. Food microbiology–fundamentals and frontiers. Chemical Preservatives and Natural Antimicrobial Compounds"(Eds Doyle, MP. 2001:593-627.
[42]. Ledenbach LH, Marshall RT. Microbiological spoilage of dairy products. Compendium of the microbiological spoilage of foods and beverages: Springer; 2010. p. 41-67.
[43]. Sperber WH, Doyle MP. Compendium of the microbiological spoilage of foods and beverages: Springer; 2009.
[44]. Wang H, Yan Y, Wang J, Zhang H, Qi W. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PloS one. 2012;7(1):e29452.
[45]. Li H, Liu L, Zhang S, Uluko H, Cui W, Lv J. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control. 2013;34(2):675-80.
[46]. Ahmadova A, Todorov SD, Hadji-Sfaxi I, Choiset Y, Rabesona H, Messaoudi S, et al. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe. 2013;20:42-9.
[47]. Nasrollahzadeh A, Khomeiri M, Sadeghi A, Kashaninejad M. . Survey antifungal
activity of Lactobacillus isolated from Chal againest mold Penicillium chrysogenum as one of
the microbial spoilage of cheese. Iranian Journal Public Health. 2016; 45, Supplementary Issue,
No. 2
[48]. Nasrollahzadeh A, Khomeiri M, Sadeghi A. Screening of antifungal potentials of
LAB isolates from Iranian fermented camel milk drink, Chal, against Aspergillus niger and their
application as biopreservatives in cream cheese. 2019; (in press).
[49]. Khomeiri M, Esazadeh rzelighi S, Nasrollahzadeh A. Evaluation of growth inhibit of food spoilage yeast of Lactobacillus brevis and Enterococcus faecium from “chal in Iranian yoghurt drink (Doogh). Iranian Journal of Biosystems Engineering. 2016; 47: 643-649. (in persian).
[50]. Khomeiri M, Nasrollahzadeh A, Sadeghi A, Mahmoudi M, Ebrahimi M. Antifungal activity of Lactic Acid Bacteria Isolated from Masske, Chal, and local yoghurt against Aspergillus flavus and Aspergillus niger.(in press).
[51]. Nasrollahzadeh A, Khomeiri M, Sadeghi. Molecular identification of Lactic Acid Bacteria strains isolated from Chal in Golestan province and study of antifungal activity of Lactobacillus brevis and Enterococcus chrysogenum isolates against penicillium chrysogenum. Journal of Applied Microbiology in Food Industry. 2016; 2: 56-69. (in persian).
[52]. Muhialdin BJ, Hassan Z, Sadon SK. Antifungal Activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on Selected Foods. Journal of food science. 2011;76(7):M493-M9.
[53]. Lynch KM, Pawlowska AM, Brosnan B, Coffey A, Zannini E, Furey A, et al. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. International Dairy Journal. 2014;34(1):167-73.
[54]. Sjogren J, Magnusson J, Broberg A, Schnu¨rer J, Kenne L: Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 2003, 69:7554-7557.
[55]. Vandenbergh PA: Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 1993, 12:221-237.
[56]. Kashket ER: Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance. FEMS Microbiol Lett 1987, 46:233-244.
[57]. Ganzle MG, Vogel RF: Studies on the mode of action of reutericyclin. Appl Environ Microbiol 2003, 69:1305-1307.
[58]. Lindgren SE, Dobrogosz WJ: Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 1990, 7:149-163.
[59]. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B,
Britton RA: The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 2010, 156: 1589-1599.
[60]. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M: Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal
region of bovine lactoferrin. Med Microbiol Immunol 1993, 182:97-105.
[61]. Gifford JL, Hunter HN, Vogel HJ: Lactoferricin: a lactoferrinderived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 2005, 62:2588-2598.
[62]. Siedler S, Balti R, Neves AR. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Current opinion in biotechnology. 2019, 56:138-46.
[63]. Gilliland SE. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology reviews. 1990;7(1-2):175-88.
[64]. Crowley S, Mahony J, van Sinderen D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology. 2013;33(2):93-109.
[65]. Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology. 2013;30(1):70-83.
[66]. Loubiere P, Cocaign‐Bousquet M, Matos J, Goma G, Lindley N. Influence of end‐products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. Journal of applied microbiology. 1997;82(1):95-100.
[67]. Corsetti A, Gobbetti M, Rossi J, Damiani P. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology. 1998;50(2):253-6.
[68]. Baek E, Kim H, Choi H, Yoon S, Kim J. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. Journal of Microbiology. 2012;50(5):842-8.
[69]. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology. 2000;66(9):4084-90.
[70]. Talarico TL, Dobrogosz WJ. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrobial agents and chemotherapy. 1989;33(5):674-9.
[71]. Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters. 2003;219(1):129-35.
[72]. Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology. 2002;68(9):4322-7.
[73]. Dal Bello F, Clarke C, Ryan L, Ulmer H, Schober T, Ström K, et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science. 2007;45(3):309-18.
[74]. Ryan LA, Dal Bello F, Arendt EK, Koehler P. Detection and quantitation of 2, 5-diketopiperazines in wheat sourdough and bread. Journal of agricultural and food chemistry. 2009;57(20):9563-8.
[75]. Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of food science. 2011;76(6):M305-M11.
[76]. Black BA, Zannini E, Curtis JM, Gänzle MG. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Applied and environmental microbiology. 2013;79(6):1866-73.
[77]. Avis TJ, Bélanger RR. Specificity and Mode of Action of the Antifungal Fatty Acid cis-9-Heptadecenoic Acid Produced by Pseudozyma flocculosa. Applied and environmental microbiology. 2001;67(2):956-60.