تردسازی گوشت با استفاده از ترکیبات طبیعی موجود در میوه‌ها و سبزیجات

نویسندگان
1 دانشجوی دکترای علوم و صنایع غذایی
2 استاد راهنمای اول
3 استادیار گروه نانو فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد
4 دانشیار گروه صنایع غذایی، دانشگاه آزاد اسلامی واحد دامغان، دامغان، ایران
چکیده
علی‏رغم موفقیت نسبی ترکیبات شیمیایی مختلف در بهبود تردی گوشت، اثرات نامطلوب ایجاد شده در اثر استفاده این ترکیبات بر ویژگی‏های فیزیکوشیمیایی و حسی گوشت، منجر به ایجاد محدودیت‏هایی در استفاده از آنها در مقیاس صنعتی شده است. بنابراین جهت جلوگیری از ایجاد این اثرات نامطلوب شیمیایی، استفاده از برخی تردکننده‏‏های طبیعی مورد توجه قرار گرفته‏اند. تردکنندهای طبیعی گوشت، ترکیبات موجود در آن دسته از میوه‏ها و سبزیجاتی هستند که دارای آنزیم‏های پروتئولیتیک بوده و شامل سیستئین پروتئازها، سرین پروتئازها، متالوپروتئازها و آسپارتیک پروتئازها می‏باشند. در این مقاله، تغییرات اساسی ایجاد شده از منظر بیوشیمیایی که منجر به ایجاد تردی در گوشت می‏شوند و همچنین منابع گیاهی مناسب برای استفاده در فرایند تردسازی بافت گوشت مورد مطالعه و معرفی قرار گرفته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Meat tenderization using natural compounds from fruits and vegetables

نویسندگان English

mona mazaheri 1
homa baghaei 2
bahare emadzadeh 3
marzieh bolandi 4
1 PhD student
2 Assistant Professor
3 Assistant Professor
4 Associate Professor
چکیده English

Despite the relative success of different chemical compounds to improve meat tenderness, adverse effects caused by the use of these compounds on the physicochemical and sensory characteristics of meat, have led to restrictions on their use on an industrial scale. Therefore, in order to prevent these undesirable chemical effects, the application of some natural tenderizers has been considered. Natural meat tenderizers, are substances in those fruits and vegetables containing proteolytic enzymes such as cysteine protease, serine protease, metalloprotease and aspartic proteases. In this paper major biochemical changes that have led to meat tenderness, as well as proper plant sources used in tenderizing process have been reviewed.

کلیدواژه‌ها English

Fruits
Meat
Natural tenderizer
protease
vegetables
[1] Koohmaraie, M., Kent, M.P., Shackelford, S.D., Veiseth. E., and Wheeler, T.L. 2002. Meat tenderness and muscle growth: is there any relationship. Meat Science, 62:345-352.
[2] Lawrie, R.A. 1999. Meat Science. 5th ‘ed., Pergamon Press Oxford.
[3] Bhat, Z.F., Morton, J.M., Susan L. Mason, L.M., and Bekhit, A.E.D. 2018. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective. Comprehensive Reviews in Food Science and Food Safety, 17:481-485. https://doi.org/ 10.1111/1541-4337.12356.
[4] Ramezani, R., Aminlari, M., and Fallahi, H. 2003. Effect of Chemically Modified Soy Proteins and Ficin‐tenderized Meat on the Quality Attributes of Sausage. Journal of Food Science, 68(1): 85-88.
[5] Koak, J.H., Kim, H.S., Choi, Y.J., Baik, M.Y., and Kim, B.Y. 2011. Characterization of a Protease from Over-matured Fruits and Development of a Tenderizer Using an Optimization Technique. Food Science and Biotechnology, 20(2):485-490.
[6] Kim, EM, Choe, IS, Hwang, SG. 2003. Effects of singular manner or mixed type treatment of proteases isolated from pear, pineapple and kiwifruit on actomyosin degradation. Korean Journal Food Science Annual, 23:193-199.
[7] Herrera-Mendez, C.H., Becila, S., Boudjellal, A., Ouali, A. 2006. Meat Aging: Reconsideration of the current concept. Trends.in Food Science and Technology, 17:394-405.
[8] Dubey, V.K., Pande, M., Singh. B.K., and Jagannadham, M.V. 2007. Papain-like proteases: Applications of their inhibitors. African Journal of Biotechnology, 6(9):1077-1086.
[9] Koohmaraie, M., and Geesink, G.H. 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74:34-43.
[10] Green, D.R. 2005. Apoptotic pathways: ten minutes to dead. Cell, 121:671–674.
[11] Fuentes-Prior, P. and Salvesen, G.S. 2004. The protein structures that shape caspase-activity, specificity, activation, and inhibition. Journal of Biochemistry, 384:201-232.
[12] Kemp, C.M., Bardsley, R.G., and Parr, T. 2006. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. Journal of Animal Science, 84: 2841-2846.
[13] Taylor, R.G., Geesink, G.H., Thompson, V.F., Koohmaraie M., and Goll, D.E. 1995. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 21:1351-1367.
[14] Geesink, G.H., Kuchay, S., Chishti, A.H., and Koohmaraie, M. 2006. Micro-calpain is essential for postmortem proteolysis of muscle proteins. Journal Animal Science, 84:2834-2840.
[15] Lamare, M., Taylor, R.G., Farouta, L., Briand, Y., and Briand, M. 2002. Changes in proteasome activity during postmortem aging of bovine muscle. Meat Science, 61:199-204.
[16] Thomas, A.R., H. Gondoza, L.C. Hoffman, V. Oosthuizen, J. Ryno and A. Naude. 2004. The roles of the proteasome and cathepsins B, L, H and D, in ostrich meat tenderisation. Meat Science, 67: 113-120.
[17] Singh, R.P., Panda, B. 1984. Preparation and storage stability of quail pickle. Indian Journal of Poultry Science, 19: 203-206.
[18] Coleby, B., Shepherd, H.J., Ingram M. 1961. Treatment of meats with ionizing radiations. Changes in quality during storage of sterilized raw beef and pork. Journal of the Science of Food and Agriculture, 12 (5):417-424.
[19] White, A. A. O'Sullivan, D.J. Troy, E.E. O'Neill. 2006. Manipulation of the pre-rigor glycolytic behavior of bovine M. longissimus dorsi in order to identify causes of inconsistencies in tenderness. Meat Science, 73: 151-156.
[20] Toohey, E.S., Kerr, M.J., Ven, R. van de and Hopkins, D.L. 2011. The effect of a kiwi fruit based solution on meat traits in beef M. Semimembranosus (topside). Meat Science, 88:468–471.
[21] Czaplewski, C., Grazonka, Z., Jaskolski, M., Kasprzykowski, F., Kozak, M., Politowska, E., and Ciarkowski, J. 1999. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Biochimica et Biophysica Acta, 1431(2): 290-305.
[22] Lawrie, R. A. and Ledward, D. 2006. Lawrie’s Meat Science. CRC Press, USA, 442 p.
[23] Polaina, J.P. and MacCabe, A.P. 2007. Industrial Enzymes, Structure, Function and Applications. Springer, 641 p.
[24] Miraghaee, S., Mostafaie, A., Kiani, S., and Kahrizi, D. Investigation on Protein Pattern in Kiwifruit (Actinidia deliciosa). 2011. World Applied Sciences Journal, 15 (10):1398-1402.
[25] Sun, Q., Zhang, B., Yan, Q.J., Zheng-Qiang Jiang, Z.Q. 2016. Comparative analysis on the distribution of protease activities among fruits and vegetable resources. Food Chemistry, 213:708–713.
[26] Vazques-Lara, l., Tello-solis, SR., Gomez-ruiz, L., Garcia-Garbibay, M. and Rodriguez, S.G. 2003. Degradation of α-Lactalbumin and β-Lactoglobulin by actinidin. Food Biotechnology, 17(2): 117-128.
[27] Yamaguchi, T., Yamashita, Y., Takeda, I., and Kiso, Hi. 1982. Proteolytic Enzymes in Green Asparagus, Kiwi Fruit and Miut: Occurrence and Partial Characterization. Journal of Agricultural and Biological Chemistry, 46(8): 1983-1986.
[28] Ha, M., Bekhit A.E.D, Carne A., Hopkins D.L. 2013 Characterization of kiwifruit and asparagus enzyme extracts and their activities toward meat proteins. Food Chemistry, 136:989–998.
[29] Lee, E-J., Oh, S-W., Lee, N-H., Kim, Y-H., Lee, D-U., Yamamoto, K., and Kim, Y-J. 2009 Application of a kiwifruit (Actinidia chinensis) to improve the textural quality on Beef Bulgogi treated with hydrostatic pressure. Korean Journal for Food Science of Animal Resources, 29(3): 317-324.
[30] Han, J., Morton, J.D., Bekhit, A.E.D., Sedcole, J.R. 2009. Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Science, 82:324–330.
[31] Ionescu, A., Aprodu, I., Pascaru, G. 2008. Effect of Papain and Bromelin on Muscle and Collagen Proteins in beef meat. The Annals of the University Dunarea de Jos of Galati, Food Technology, New Series, p: 9-16.
[32] Istrati, D., Vizireanu, C., Dima, F., Dinică, R. 2012. Effect of marination with proteolytic enzymes on quality of beef muscle. The International Conference of Applied Sciences, Chemistry and Chemical Engineering, 13(1):081- 089.
[33] Doneva, M., Miteva, D., Dyankova, S., Nacheva, I., Metodieva, P., Dimov, K. 2015. Effıciency of plant proteases bromelain and papain on turkey meat tenderness. Biotechnology in Animal Husbandry, 31(3): 407–413.
[34] Gokoglu, N., Yerlikaya, P., Ucak, I., Yatmaz, H.A. 2016. Effect of bromelain and papain enzymes addition on physicochemical and textural properties of squid (Loligo vulgaris). Journal of Food Measurnment and Characteristic, 11(1), 347–353. DOI 10.1007/s11694-016-9403-3.
[35] Żochowska-Kujawska, J., Kotowicz, M., Lachowicz, K. Sobczak, M. 2017. Influence of marinades on shear force, structure and sensory properties of home-style jerky. Journal Food Sciences and Nutrition Acta Scientiarum Polonorum, 16(4): 413–420.
[36] Maqsood, S., Manheem, K., Gani, A., Abushelaibi, A. 2018. Degradation of myofibrillar, sarcoplasmic and connective tissue proteins by plant proteolytic enzymes and their impact on camel meat tenderness. Journal of Food Science Technology. https://doi.org/10.1007/s13197-018-3251-6.
[37] Shekarforoush, S., Aminlari, M., Sabbagh, N. 2009. Comparative studies on the effect of the enzyme ficin on the solubility and electrophoretic pattern of ovine and bovin meat proteins. Journal of Veterinary Research, 64(1):1-6 [In Persian].
[38] Sullivan, G.A., and Calkins, C.R. 2010. Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Science, 85(4):730-734.
[39] Ashie, I.N.A., Sorensen, T.L., and Nielsen, P.M. 2002. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. Journal of food science, 67:2138-2142.
[40] Yonezawa, H., Kneda, M., Uchikoba, T. 1997. A cysteine protease from young stems of Asparagus: Isolation, Properties, and Specificity. Bioscience Biotechnology and Biochemistry, 62(1):28-33.
[41] Chinnadurai, G.H., Krishnan S., Perumal, P. 2018. Studies on detection and analysis of proteases in leaf extract of medicinally important plants. Phytomedicine, 40:176–188.
[42] Ma, Q.L., Hamid, N., Bekhit, A.E.D., Robertson, J., Law, T.F. 2012. Evaluation of pre-rigor injection of beef with proteases on cooked meat volatile profile after 1 day and 21 days post-mortem storage. Meat Science, 92:430–439.
[43] Naveena, B.M., Mendiratta, S.K., Anjaneyulu, A.S.R. 2004. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Science, 68 (3):363-369.
[44] Narayan, R., Mendiratta, S. K., and Mane, B. G. 2015. Effects of citric acid, cucumis powder and pressure cooking on quality attributes of goat meat curry. Journal of Food Science and Technology, 52(3):1772–1777.
[45] He, F., Kim, H.W., Hwang, K.E., Song, D.H., Kim, Y.J., Ham, Y.K., Kim, S.Y., Yeo, I.J., Jung, T.J., Kim, C.J. 2015. Effect of Ginger Extract and Citric Acid on the Tenderness of Duck Breast Muscles. Food Science of Animal Resources, 35(6): 721-730 DOI http://dx.doi.org/10.5851/kosfa.2015.35.6.721.
[46] Tsai, L-L. Yen, N-J., Chou, R-G. R. 2012. Changes in Muscovy duck breast muscle marinated with ginger extract. Food Chemistry, 130: 316–320.
[47] Wang, Y.T., Yang, C.Y., Chen, Y.T, Lin, Y., Shaw, J.F. 2004. Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiology and Biochemistry, 42:663–670.
[48] Rawski, R.I., Sanecki, P.T., Dżugan, M., Kijowska, K. 2018. The evidence of proteases in sprouted seeds and their application for animal protein digestion. Chemical Papers, 72:1213–1221.
[49] Sanjog T. Thul, Feroz Khan, Suman P. S. Khanuja. 2011. Cathepsin B-like protease from chili pepper revealed by in silico approach. Plant Omics Journal, 4(3):120-125.