توسعه فعالیت آنتی اکسیدانی در آب پنیر و پرمیات شیر توسط لاکتوباسیلوس اسیدوفیلوس LA5 و بیفیدوباکتریوم انیمالیس زیرگونه لاکتیس BB12

نویسندگان
1 دکترای تخصصی میکروبیولوژی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز
3 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه
چکیده
رادیکال های آزاد، از طریق آسیب رساندن به سلول ها عامل اصلی بسیاری از بیماری ها مانند سرطان هستند. کاربرد سویه­های پروبیوتیک در مواد غذایی لبنی تخمیری به دلیل اثرات ارتقاء سلامت مصرف کننده، گسترش یافته است. با توجه به پتانسیل­های آنتی اکسیدانی باکتری های پروبیوتیک، اهداف این مطالعه مقایسه فعالیت آنتی اکسیدانی گونه­های مرسوم پروبیوتیک (L. acidophilus LA5 و B. animalis subsp. lactis BB12) مورد استفاده در مواد غذایی و بررسی اثرات دمای گرمخانه گذاری، pH اولیه، زمان تخمیر، غلظت عصاره مخمر و غلظت لینولئیک اسید، بر فعالیت آنتی اکسیدانی آنها در محیط کشت آب پنیر و پرمیات شیر غنی شده بود. نتایج نشان داد که زمان تخمیر، دمای گرمخانه گذاری و غلظت عصاره مخمر مهمترین فاکتورهایی هستند که اثر معنی دار بر فعالیت مهار رادیکال آزاد DPPH و فعالیت مهار رادیکال هیدروکسیل دارند (05/0p<). فعالیت مهار رادیکال آزاد DPPH و هیدروکسیل با افزایش دمای گرمخانه گذاری و غلظت عصاره مخمر به ترتیب با تأمین دمای بهینه و منبع نیتروژن مورد نیاز برای رشد باکتری ها، افزایش یافت. فعالیت آنتی اکسیدانی در 24 ساعت اول فرآیند افزایش یافت که متناسب با رشد باکتری­ها بود. در نتیجه فعالیت کشت­های پروبیوتیک و تأثیر آنها بر روی سوبسترا، با تخریب ساختارهای پلیمری در 24 ساعت اول زمان تخمیر، فعالیت مهار رادیکال هیدروکسیل و رادیکال آزاد DPPH به ترتیب افزایش و کاهش داشت. این مطالعه نشان داد، زیست فرآیند تخمیر توسط L. acidophilus LA5 و B. animalis subsp. lactis BB12 در محیط کشت آب پنیر، فعالیت آنتی اکسیدانی بالایی دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12

نویسندگان English

Saber Amiri 1
Reza Rezayi mokarram 2
Mahmoud Sowti Khiabani 2
Mahmoud Rezazadeh Bari 3
Mohammad Alizadeh 3
1 PhD, Food Microbiology, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده English

Free radicals are a major cause of many diseases, such as cancer, by damage to the cells. The use of probiotic strains in fermented dairy foods has expanded due to the health-promoting effects of the consumer. Regarding antioxidant potentials of probiotic bacteria, the aims of this study compared the antioxidant activity of probiotic species L. acidophilus LA5 and B. animalis subsp. lactis BB12 used in foods and investigate effects of incubation temperature, Initial pH, fermentation time, yeast extract concentration and linoleic acid concentration on their antioxidant activity in enriched cheese whey and milk permeate. The results showed that fermentation time, incubation temperature and concentration of yeast extract were the most important factors that had a significant effect on both DPPH free radical inhibitory activity and hydroxyl radical scavenging activity (p <0.05). DPPH free radical inhibitory activity and hydroxyl radical scavenging activity increased with increasing incubation temperature and yeast extract concentration, respectively. Antioxidant activity was observed in the first 24 hours of the fermentation process, which was proportional to bacterial growth. Hydroxyl radical scavenging activity and DPPH free radical scavenging activity, as a result of the probiotic culture activity and their effect on the substrate, increased and decreased, respectively, in the first 24 hours of fermentation time, by the destruction the polymers. This study showed that the fermentation bioprocess by L. acidophilus LA5 and B. animalis subsp. lactis BB12 in the cheese whey as a medium had high antioxidant activity.

کلیدواژه‌ها English

probiotics
DPPH· scavenging activity
Hydroxyl radical scavenging activity and Fermentation bioprocess
[1] Juan, M. Y., & Chou, C. C. (2010). Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food microbiology, 27(5), 586-591.
[2] Wardhani, D. H., Vázquez, J. A., & Pandiella, S. S. (2010). Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food chemistry, 118(3), 731-739.
[3] Virtanen, T., Pihlanto, A., Akkanen, S., & Korhonen, H. (2007). Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of applied microbiology, 102(1), 106-115.
[4] Bensmira, M., & Jiang, B. (2015). Total phenolic compounds and antioxidant activity of a novel peanut based kefir. Food Science and Biotechnology, 24(3), 1055-1060.
[5] Hamdipour, S., Rezazad, M. & Alizadeh, M. (2014). Identification of effective factors on antioxidant production and extraction from apple residue using two subvarietes of Rhizopus oligosporus Journal of Food Research, 3(25), 359-368.
[6] Osuntoki, A., & Korie, I. (2010). Antioxidant activity of whey from milk fermented with Lactobacillus species isolated from Nigerian fermented foods. Food Technology and Biotechnology, 48(4), 505-511.
[7] Shah, C., Mokashe, N., & Mishra, V. (2016). Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products. Journal of food science and technology, 53(4), 1984-1992.
[8] Mathys, S., Meile, L., & Lacroix, C. (2009). Co‐cultivation of a bacteriocin‐producing mixed culture of Bifidobacterium thermophilum RBL67 and Pediococcus acidilactici UVA1 isolated from baby faeces. Journal of Applied Microbiology, 107(1), 36-46.
[9] Ahire, J. J., Mokashe, N. U., Patil, H. J., & Chaudhari, B. L. (2013). Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. Journal of food science and technology, 50(1), 26-34.
[10] Achuthan, A. A., Duary, R. K., Madathil, A., Panwar, H., Kumar, H., Batish, V. K., & Grover, S. (2012). Antioxidative potential of lactobacilli isolated from the gut of Indian people. Molecular biology reports, 39(8), 7887-7897.
[11] Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C., & Kilk, A. (2002). Two antioxidative lactobacilli strains as promising probiotics. International journal of food microbiology, 72(3), 215-224.
[12] Lin, M. Y., & Chang, F. J. (2000). Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive diseases and sciences, 45(8), 1617-1622.
[13] Tabasco, R., García-Cayuela, T., Peláez, C., & Requena, T. (2009). Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. International journal of food microbiology, 132(2), 109-116.
[14] Lourens-Hattingh, A., & Viljoen, B. C. (2001). Yogurt as probiotic carrier food. International Dairy Journal, 11(1), 1-17.
[15] Namdari, A., & Nejati, F. (2016). Development of Antioxidant Activity during Milk Fermentation by Wild Isolates of Lactobacillus helveticus. Applied Food Biotechnology, 3(3), 178-186.
[16] Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. C. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of dairy science, 99(3), 1859-1867.
[17] Pescuma, M., de Valdez, G. F., & Mozzi, F. (2015). Whey-derived valuable products obtained by microbial fermentation. Applied microbiology and biotechnology, 99(15), 6183-6196.
[18] Khamirian, R. A., Jooyandeh, H., Hesari, J., & Barzegar, H. (2016). Optimization and investigation on physicochemical, microbial and sensory quality of permeate-based probiotic lemon beverage. Iranian Food Science and Technology Research Journal, 1396(13).
[19] Nabizadeh, F., Khosrowshahi Asl, A. & Zomorodi, S. (2014). Influence of ultrafiltered milk permeate and zedo gum on qualitative properties of doogh. Journal of Food Research, 4(23), 567-580.
[20] Baljeet, S. Y., Ritika, B. Y., & Sarita, R. (2013). Studies on development and storage of whey-based pineapple (Ananas comosus) and bottle gourd (Lagenaria siceraria) mixed herbal beverage. International Food Research Journal, 20(2).
[21] Maleki, N., Khodaiyan, F., & Mousavi, S. M. (2015). Antioxidant activity of fermented Hazelnut milk. Food Science and Biotechnology, 24(1), 107-115.
[22] Salla, A. C. V., Margarites, A. C., Seibel, F. I., Holz, L. C., Brião, V. B., Bertolin, T. E., ... & Costa, J. A. V. (2016). Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource technology, 209, 133-141.
[23] Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International journal of biological macromolecules, 123, 752-765.
[24] de Lara Pedroso, D., Thomazini, M., Heinemann, R. J. B., & Favaro-Trindade, C. S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127-132.
[25] Florence, A. C. R., Oliveira, R. P., Silva, R. C., Soares, F. A., Gioielli, L. A., & Oliveira, M. N. (2012). Organic milk improves Bifidobacterium lactis counts and bioactive fatty acids contents in fermented milk. LWT-Food Science and Technology, 49(1), 89-95.
[26] Loghavi, L., Sastry, S. K., & Yousef, A. E. (2007). Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and bioengineering, 98(4), 872-881.
[27] Pereira, C., Henriques, M., Gomes, D., Gomez-Zavaglia, A., & de Antoni, G. (2015). Novel Functional Whey-Based Drinks with Great Potential in the Dairy Industry. Food technology and biotechnology, 53(3), 307.
[28] Lee, M., Hong, G. E., Zhang, H., Yang, C. Y., Han, K. H., Mandal, P. K., & Lee, C. H. (2015). Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10. Food Science and Biotechnology, 24(2), 537-544.
[29] Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2018). Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT-Food Science and Technology, 87, 432-442.
[30] Peña‐Ramos, E. A., Xiong, Y. L., & Arteaga, G. E. (2004). Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. Journal of the Science of Food and Agriculture, 84(14), 1908-1918.
[31] Solieri, L., Rutella, G. S., & Tagliazucchi, D. (2015). Impact of non-starter lactobacilli on release of peptides with angiotensin-converting enzyme inhibitory and antioxidant activities during bovine milk fermentation. Food microbiology, 51, 108-116.
[32] Robinson, R. K. (2014). Encyclopedia of food microbiology. C. A. Batt (Ed.). Academic press.
[33] McCue, P. P., & Shetty, K. (2005). Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry, 40(5), 1791-1797.
[34] Lee, Y. K., & Salminen, S. (2009). Handbook of probiotics and prebiotics. John Wiley & Sons.
[35] Hamdipour, S., Rezazad, M., & Alizadeh, M. (2014). Production of phenolic antioxidants from apple residue using Rhizopus oligosporus. International Journal of Advanced Biological and Biomedical Research, 2(6), 1937-1942.
[36] Marhamatizadeh, H. M., Ehsandoost, E., Gholami, P., Moshiri, H., & Nazemi, M. (2012). Effect of permeate on growth and survival of Lactobacillus acidophilus and Bifidobacterium bifidum for production of probiotic nutritive beverages. World Applied Sciences Journal, 18(1), 1389-1393.
[37] Jayalalitha, V., Balasundaram, B., & Palanidorai, R. (2012). In Vitro assessment of microencapsulated probiotic beads. International Journal of Agriculture: Research and Review, 2 (1): 1-6.
[38] Sarabi jamab, M., Rahnama vosough, P., kate shamdhiri, M. & Karazhyan, R. (2017). Survivability of Probiotic Bacteria in Simulated Gastric and Intestinal model. JFST No. 68, Vol. 14.
[39] Hekmat, S., Soltani, H., & Reid, G. (2009). Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innovative food science & emerging technologies, 10(2), 293-296.
[40] Lucas, A., Sodini, I., Monnet, C., Jolivet, P., & Corrieu, G. (2004). Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. International Dairy Journal, 14(1), 47-53.
[41] Gueimonde, M., Delgado, S., Mayo, B., Ruas-Madiedo, P., Margolles, A., & de los Reyes-Gavilán, C. G. (2004). Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 37(9), 839-850.