[1] Wagner, A.O., Praeg, N., Reitschuler, C., Illmer, P. 2015. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil. Applied Soil Ecology, 93, 56–64.
[2] Nocker, A., Camper, A.K. 2006. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoacide. Applied Environmental Microbiology, 72, 1997–2004.
[3] Nocker, A., Cheung, C.Y., Camper, A.K. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67, 310–320.
[4] Trevors, J. 2012. Can dead bacterial cells be defined and are genes expressed after cell death? Journal of Microbiological Methods, 90, 25–28.
[5] Leifels, M., Jurzik, L., Wilhelm, M., Hamza, I.A. 2015. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine. International Journal of Hygiene and Environmental Health, 218 (8), 686–693.
[6] Jeong, M.I., Park, S.Y., Ha, S.D. 2017. Thermal inactivation of human norovirus on spinach using propidium or ethidium monoazide combined with real-time quantitative reverse transcription-polymerase chain reaction. Food Control, 78, 79-84.
[7] Elizaquivel, P., Sanchez, G., Selma, M.V., Aznar, R. 2012. Application of propidum monoazide-qPCR to evaluate the ultrasonic inactivation of Escherichia coli O157:H7 in fresh-cut vegetable wash water. Food Microbiology, 30, 316-320.
[8] Wagner, A.O., Malin, C., Knapp, B.A., Illmer, P. 2008. Removal of Free Extracellular DNA from Environmental Samples by Ethidium Monoazide and Propidium Monoazide. Applied Environmantal Microbiology, 2537–2539.
[9] Kerényi, M., Allison, H. E., Bátai, I., Sonnevend, Á., Emödy, L., Plaveczky, N., et al. 2005. Occurrence of hlyA and sheA genes in extraintestinal Escherichia coli strains. Journal of Cliniacal Microbiology, 43(6), 2965-2968.
[10] Fischer, A., Francois, P., Holtfreter, S., Broker, B., et al. 2009. Development and evaluation of a rapid strategy to determine enterotoxin gene content in Staphylococcus aureus. Journal of Microbiological Methods, 77, 184-190.
[11] Waters, C.M., Antiporta, M.H., Murray, B.E., Dunny, G.M. 2003. Role of the Enterococcus faecalis GelE Protease in Determination of Cellular Chain Length, Supernatant Pheromone Levels, and Degradation of Fibrin and Misfolded Surface Proteins. Journal of Bacteriology, 185(12), 3613–3623.
[12] van Frankenhuyzen, J.K., Trevors, J.T., Flemming, C.A., Lee, H., Habash, M.B. 2013. Optimization validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 40, 1251–1261.
[13] Shi, H., Xu, W., Luo, Y., Chen, L., Liang, Z., Zhou, X., Huang, K. 2011. The effect of various environmental factors on the ethidium monazite and quantitative PCR method to detect viable bacteria. Journal of Applied Microbiology, 111 (5), 1194–1204.
[14] Elizaquivel, P., Aznar, R., Sanchez, G. 2014. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. Journal of Applied Microbiology, 116 (1), 1–13.
[15] Soejima, T., Schlitt-Dittrich, F., Yoshida, S. 2011. Polymerase chain reaction amplification length-dependent ethidium monoazide suppression power for heat-killed cells of Enterobacteriaceae. Analytical Biochemistry, 418, 37–43.
[16] Martin, B., Raurich, S., Garriga, M., Aymerich, T. 2013. Effect of amplicon length in propidium monoazide quantitative PCR for the enumeration of viable cells of salmonella in cooked ham. Food Analytical Methods, 6, 683–690.
[17] Soejima, T., Minami, J., Iwatsuki, K. 2012. Rapid propidium monoazide PCR assay for the exclusive detection of viable Enterobacteriaceae cells in pasteurized milk. Journal of Dairy Science, 95(7), 3634-3642.
[18] Chen, Z., Dexin, Z., Nan, L., Jianjun, D., Feng, X.,Yuan, J., Baoguang, L. 2018. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiology, 18: 132.