بررسی خصوصیات اولئوژل تولیدی به روش غیر حرارتی با استفاده از زیست پلیمر‌های ژلاتین و زانتان و غنی سازی آن با ویتامین D

نویسنده
دانشگاه صنعتی اصفهان
چکیده
در این مطالعه زیست پلیمر‌های ژلاتین و زانتان در یک فرایند غیر حرارتی برای تولید اولئوژل و غنی سازی آن با ویتامین D استفاده شدند. نتایج بدست آمده از بررسی طیف سنجی نشان داد که پیوند هیدروژنی ناشی از زیست پلیمر‌ها در تشکیل شبکه اولئوژل موثر است. بعلاوه، اولئوژل رفتار تیکسوتروپیک، احیای ساختاری مناسب و حفظ قدرت ژل در دما‌های پایین‌تر از 100 درجه سلسیوس نشان داد. همچنین، اولئوژل غنی شده با ویتامین D تهیه و پایداری ویتامین طی 45 روز انبار مانی در دما‌های 25 و 40 درجه سلسیوس و رهایش آن با کمک کروماتوگرافی مایع کارآیی بالا مورد بررسی قرار گرفت. نتایج نشان داد که حضور شبکه زیست پلیمر در کوتاه مدت تاثیر معنا‌داری بر پایداری ویتامین نداشت، در حالی که توانست بر رهایش کنترل شده ویتامین در مقایسه با روغن موثر باشد. بنابر نتایج بدست آمده، اولئوژل ژلاتین و زانتان تهیه شده به روش غیر حرارتی کف آبی می‌تواند به عنوان جایگزینی برای چربی جامد و حامل ترکیبات زیست فعال در محصولات غذایی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of oleogel characteristics in non-thermal process using gelatin and xanthan biopolymers and its fortification with vitamin D

نویسنده English

Amir Goli
IUT
چکیده English

In this paper, biopolymers of gelatin and xanthan were used to oleogel preparation and its fortification with vitamin D in non-thermal process. The results obtained from spectroscopy studies exhibited that hydrogen bonding originated from biopolymers, was effective in formation of oleogel structure. In addition, the oleogel showed thixotropic behavior, 60% structural recovery and desirable gel strength at temperatures below 100 °C. Also, enriched vitamin D oleogel was prepared and vitamin stability during 45 days of storage at different temperatures (25 and 40 °C) and vitamin D release (%) was investigated using high performance liquid chromatography. The results showed that the presence of biopolymers network in short terms of storage had no significant effect on vitamin D stability while it can affect the controlled release of vitamin in comparison with oil. According to the results, gelatin and xanthan gum oleogel prepared in a non-thermal way can be used as a replacement of solid fats and carrier of bioactive compounds in food products.

کلیدواژه‌ها English

Gelatin
Xanthan
Oleogel
Rheology
Release
[1] Ahmadi, M., Madadlou, A. and Saboury, A. A. 2016. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food chemistry. 196: 1016-1022.
[2] Chloe, M., Davidovich-Pinhas, M., Wright, A. J., Barbut, S. and Marangoni, A. G. 2017. Ethylcellulose oleogels for lipophilic bioactive delivery–effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food & function. 8: 1438-1451.
[3] Dassanayake, L. S. K., Kodali, D. R. and Ueno, S. 2011. Formation of oleogels based on edible lipid materials. Current opinion in colloid & interface science. 16: 432-439.
[4] Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., Delbaere, C. and Dewettinck, K. 2016. The feasibility of wax‐based oleogel as a potential co‐structurant with palm oil in low‐saturated fat confectionery fillings. European Journal of Lipid Science and Technology 118: 1903-1914.
[5] Du, A., Zhou, B., Zhang, Z. and Shen, J. 2013. A special material or a new state of matter: a review and reconsideration of the aerogel. Materials. 6: 941- 968.
[6] Esteghlal, S., Niakousari, M. and Hosseini, S. M. H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. International journal of biological macromolecules. 114: 1-9.
[7] Fayaz, G., Goli, S. A. H. and Kadivar, M. 2017. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal structure and thermal properties. Journal of the American Oil Chemists' Society. 94: 47-55.
[8] Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S. and Nicoli, M. C. 2017. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT-Food Science and Technology. 86: 523-529.
[9] Gimeno, E., Castellote, A. I., Lamuela-Raventós, R. M., de la Torre, M. C. and López-Sabater, M. C. 2000. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. Journal of Chromatography A. 881: 251-254.
[10] Hasanvand, E., Fathi, M., Bassiri, A., Javanmard, M. and Abbaszadeh, R. 2015. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food and Bioproducts Processing. 96: 264-277.
[11] Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A. and Rush, J. W. 2009. Potential food applications of edible oil organogels. Trends in Food Science & Technology. 20: 470-480.
[12] Iwanaga, K., Sumizawa, T., Miyazaki, M. and Kakemi, M. 2010. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds. International journal of pharmaceutics. 388: 123-128.
[13] Lee, J. H., J. H. O'Keefe, D. Bell, D. D. Hensrud and M. F. Holick. 2008. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor. Journal of the American College of Cardiology. 52: 1949-1956.
[14] Lee, S. 2018. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids. 77: 796-802.
[15] Luo, Y., Teng, Z. and Wang, Q. 2012. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of agricultural and food chemistry. 60: 836-843.
[16] Lupi, F. R., Greco, V., Baldino, N., De Cindio, B., Fischer, P. and Gabriele, D. 2016. The effects of intermolecular interactions on the physical properties of organogels in edible oils. Journal of colloid and interface science. 483: 154-164.
[17] Marangoni, A. G. 2012. Organogels: an alternative edible oil-structuring method. Journal of the American Oil Chemists' Society. 89: 749-780.
[18] Martins, A. J., Pastrana, L., Vicente, A. and Cerqueira, M. 2018. Food Grade Polymers for the Gelation of Edible Oils Envisioning Food Applications. In: Polymers for Food Applications. Gutiérrez T. (Ed.). Springer, Cham, New York. pp. 591-608.
[19] Meng, Z., Qi, K., Guo, Y., Wang, Y. and Liu, Y. 2017. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids. 77: 17-29.
[20] Meng, Z., Qi, K., Guo, Y., Wang, Y. and Liu, Y. 2018. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry. 246: 137-149.
[21] O'Sullivan, C. M., Barbut, S. and Marangoni, A. G. 2016. Edible oleogels for the oral delivery of lipid soluble molecules: composition and structural design considerations. Trends in Food Science & Technology. 57: 59-73.
[22] Park, S. J., C. V. Garcia, G. H. Shin and J. T. Kim. 2017. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry. 225: 213-219.
[23] Patel, A. R. 2015. Polymer-Based Oleogels Created Using Indirect Methods. In: Alternative Routes to Oil Structuring. Hartel, R. W. (Ed.). Springer, Cham, New York. pp. 29-39.
[24] Patel, A. R. 2018. Edible Foams Stabilized by Food-Grade Polymers. In: Polymers for Food Applications. Gutiérrez, T. (Ed.). Springer, Cham, New York. pp. 251-269.
[25] Patel, A. R., Cludts, N., Sintang, B., Dona, M., Lewille, B., Lesaffer, A. and Dewettinck, K.2014. Polysaccharide‐Based Oleogels Prepared with an Emulsion‐Templated Approach. ChemPhysChem. 15: 3435-3439.
[26] Patel, A. R. and Dewettinck, K. 2015. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European journal of lipid science and technology. 117: 1772-1781.
[27] Patel, A. R., Rajarethinem, P. S., Cludts, N., Lewille, B., De Vos, W. H., Lesaffer, A. and Dewettinck, K. 2014. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir. 31: 2065-2073.
[28] Patel, A. R., Schatteman, D., Lesaffer, A. and Dewettinck, K. 2013. A foam-templated approach for fabricating organogels using a water-soluble polymer. Rsc Advances. 3: 22900-22903.
[29] Plieva, F. M., Ekström, P., Galaev, I. Y. and Mattiasson, B. 2008. Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter. 4: 2418-2428.
[30] Tanti, R., Barbut, S. and Marangoni, A. G. 2016. Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloids. 61: 329-337.
[31] Teng, Z., Luo, Y. and Wang, Q. 2013. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food chemistry. 141: 524-532.
[32] Yılmaz, E. and Öğütcü, M. 2014. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists' Society. 91: 1007-1017.
[33] Zahi, M. R., Liang, H. and Yuan, Q. 2015. Improving the antimicrobial activity of D-limonene using a novel organogel-based nanoemulsion. Food Control 50: 554-559.