[1] Ahmadi, M., Madadlou, A. and Saboury, A. A. 2016. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food chemistry. 196: 1016-1022.
[2] Chloe, M., Davidovich-Pinhas, M., Wright, A. J., Barbut, S. and Marangoni, A. G. 2017. Ethylcellulose oleogels for lipophilic bioactive delivery–effect of oleogelation on in vitro bioaccessibility and stability of beta-carotene. Food & function. 8: 1438-1451.
[3] Dassanayake, L. S. K., Kodali, D. R. and Ueno, S. 2011. Formation of oleogels based on edible lipid materials. Current opinion in colloid & interface science. 16: 432-439.
[4] Doan, C. D., Patel, A. R., Tavernier, I., De Clercq, N., Van Raemdonck, K., Van de Walle, D., Delbaere, C. and Dewettinck, K. 2016. The feasibility of wax‐based oleogel as a potential co‐structurant with palm oil in low‐saturated fat confectionery fillings. European Journal of Lipid Science and Technology 118: 1903-1914.
[5] Du, A., Zhou, B., Zhang, Z. and Shen, J. 2013. A special material or a new state of matter: a review and reconsideration of the aerogel. Materials. 6: 941- 968.
[6] Esteghlal, S., Niakousari, M. and Hosseini, S. M. H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. International journal of biological macromolecules. 114: 1-9.
[7] Fayaz, G., Goli, S. A. H. and Kadivar, M. 2017. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal structure and thermal properties. Journal of the American Oil Chemists' Society. 94: 47-55.
[8] Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S. and Nicoli, M. C. 2017. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT-Food Science and Technology. 86: 523-529.
[9] Gimeno, E., Castellote, A. I., Lamuela-Raventós, R. M., de la Torre, M. C. and López-Sabater, M. C. 2000. Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography. Journal of Chromatography A. 881: 251-254.
[10] Hasanvand, E., Fathi, M., Bassiri, A., Javanmard, M. and Abbaszadeh, R. 2015. Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food and Bioproducts Processing. 96: 264-277.
[11] Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A. and Rush, J. W. 2009. Potential food applications of edible oil organogels. Trends in Food Science & Technology. 20: 470-480.
[12] Iwanaga, K., Sumizawa, T., Miyazaki, M. and Kakemi, M. 2010. Characterization of organogel as a novel oral controlled release formulation for lipophilic compounds. International journal of pharmaceutics. 388: 123-128.
[13] Lee, J. H., J. H. O'Keefe, D. Bell, D. D. Hensrud and M. F. Holick. 2008. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor. Journal of the American College of Cardiology. 52: 1949-1956.
[14] Lee, S. 2018. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids. 77: 796-802.
[15] Luo, Y., Teng, Z. and Wang, Q. 2012. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of agricultural and food chemistry. 60: 836-843.
[16] Lupi, F. R., Greco, V., Baldino, N., De Cindio, B., Fischer, P. and Gabriele, D. 2016. The effects of intermolecular interactions on the physical properties of organogels in edible oils. Journal of colloid and interface science. 483: 154-164.
[17] Marangoni, A. G. 2012. Organogels: an alternative edible oil-structuring method. Journal of the American Oil Chemists' Society. 89: 749-780.
[18] Martins, A. J., Pastrana, L., Vicente, A. and Cerqueira, M. 2018. Food Grade Polymers for the Gelation of Edible Oils Envisioning Food Applications. In: Polymers for Food Applications. Gutiérrez T. (Ed.). Springer, Cham, New York. pp. 591-608.
[19] Meng, Z., Qi, K., Guo, Y., Wang, Y. and Liu, Y. 2017. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids. 77: 17-29.
[20] Meng, Z., Qi, K., Guo, Y., Wang, Y. and Liu, Y. 2018. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry. 246: 137-149.
[21] O'Sullivan, C. M., Barbut, S. and Marangoni, A. G. 2016. Edible oleogels for the oral delivery of lipid soluble molecules: composition and structural design considerations. Trends in Food Science & Technology. 57: 59-73.
[22] Park, S. J., C. V. Garcia, G. H. Shin and J. T. Kim. 2017. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry. 225: 213-219.
[23] Patel, A. R. 2015. Polymer-Based Oleogels Created Using Indirect Methods. In: Alternative Routes to Oil Structuring. Hartel, R. W. (Ed.). Springer, Cham, New York. pp. 29-39.
[24] Patel, A. R. 2018. Edible Foams Stabilized by Food-Grade Polymers. In: Polymers for Food Applications. Gutiérrez, T. (Ed.). Springer, Cham, New York. pp. 251-269.
[25] Patel, A. R., Cludts, N., Sintang, B., Dona, M., Lewille, B., Lesaffer, A. and Dewettinck, K.2014. Polysaccharide‐Based Oleogels Prepared with an Emulsion‐Templated Approach. ChemPhysChem. 15: 3435-3439.
[26] Patel, A. R. and Dewettinck, K. 2015. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European journal of lipid science and technology. 117: 1772-1781.
[27] Patel, A. R., Rajarethinem, P. S., Cludts, N., Lewille, B., De Vos, W. H., Lesaffer, A. and Dewettinck, K. 2014. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir. 31: 2065-2073.
[28] Patel, A. R., Schatteman, D., Lesaffer, A. and Dewettinck, K. 2013. A foam-templated approach for fabricating organogels using a water-soluble polymer. Rsc Advances. 3: 22900-22903.
[29] Plieva, F. M., Ekström, P., Galaev, I. Y. and Mattiasson, B. 2008. Monolithic cryogels with open porous structure and unique double-continuous macroporous networks. Soft Matter. 4: 2418-2428.
[30] Tanti, R., Barbut, S. and Marangoni, A. G. 2016. Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. Food Hydrocolloids. 61: 329-337.
[31] Teng, Z., Luo, Y. and Wang, Q. 2013. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food chemistry. 141: 524-532.
[32] Yılmaz, E. and Öğütcü, M. 2014. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists' Society. 91: 1007-1017.
[33] Zahi, M. R., Liang, H. and Yuan, Q. 2015. Improving the antimicrobial activity of D-limonene using a novel organogel-based nanoemulsion. Food Control 50: 554-559.