تعیین شرایط بهینه تولید پپتید‌های ضداکسایش حاصل از هیدرولیز پروتئین هسته پرتقال با آنزیم‌ آلکالاز

نویسندگان
1 گرگان - دانشگاه علوم کشاورزی و منابع طبیعی گرگان- دانشکده صنایع غذایی- گروه شیمی ماد غذایی
2 گرگان- دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 ساری- دانشگاه علوم پزشکی مازندران
چکیده
استفاده از آنزیم جهت هیدرولیز منابع پروتئینی از روش­های معمول در فرآوری غذایی به حساب می­آید. یک ترکیب پروتئینی هیدرولیز شده مخلوطی از پپتیدها و اسیدهای آمینه­ای می­باشد که از انجام عمل هیدرولیز توسط آنزیم از منابع مختلف، اسید یا قلیا حاصل شده است. این پپتیدها نقش­های بیولوژیک سلامت بخش مهمی را در بدن ایفا می­کنند. هسته پرتقال به میزان زیادی از ضایعات صنایع تولید آبمیوه قابل دست­یابی است و آرد چربی­گیری شده آن، حدود 26 درصد پروتئین دارد و می‌تواند به عنوان منبع غنی و مقرون به صرفه برای تولید پروتئین­ها و پپتیدهایی با منشاء گیاهی مورد استفاده قرار گیرد. در این پژوهش ابتدا استخراج ایزوله پروتئین با خلوص بالا صورت گرفت، سپس با استفاده از اثر آنزیم‌ هیدرولیز کننده آلکالاز در نسبت­های مختلف آنزیم (1 تا 3% حجمی- وزنی آنزیم به سوبسترا) و بازه زمانی (2 تا 5 ساعت) در دمای 55-45 درجه سانتیگراد وpH مناسب برای فعالیت آنزیم، پروتئین آرد چربی گیری شده هسته پرتقال هیدرولیز شد و شرایط بهینه برای تولید پروتئین­های هیدرولیز شده دارای بهترین ویژگی‌های آنتی‌اکسیدانی(قدرت مهار کنندگی رادیکالDPPH، قدرت مهار کنندگی رادیکال OH، قدرت احیا کنندگیFe3+ و ویژگی آنتی­اکسیدانی کل) انتخاب شد. تیمار بهینه در شرایط دمایی (8/54 درجه سانتی­گراد)، زمان (35/3 ساعت) و نسبت غلظت آنزیم به سوبسترا (7/1 درصد حجمی- وزنی) با مقادیر85/45 درصد قدرت مهار رادیکال‌های آزاد DPPH، 82/91 درصد قدرت مهار رادیکال‌های OH، 35/89 درصد قدرت احیاکنندگی Fe3+ و 68/39 درصد ظرفیت آنتی اکسیدانی کل به دست آمد. آزمون­های آنتی اکسیدانی به منظور تایید مقادیر پیشنهاد شده توسط نرم افزار، بر تیمار بهینه صورت گرفت. ﻧﺘﺎﻳﺞ ﻧﺸﺎن داد ﻛﻪ ﭘـﺮوﺗﺌﻴﻦ ﻫﻴﺪروﻟﻴﺰ ﺷﺪه حاصل از هسته پرتقال ﻣﻲﺗﻮاند در ﻓﺮﻣﻮﻻﺳﻴﻮن ﻣﻮاد ﻏﺬاﻳﻲ ﺑﻪ ﻋﻨﻮان افزودنی طبیعی با قابلیت آﻧﺘﻲاﻛﺴﻴﺪانی و ﻧﻴﺰ اﺳﺘﻔﺎده به عنوان دارو ﻗﺎﺑﻠﻴﺖ ﻛﺎرﺑﺮد داﺷﺘﻪ ﺑﺎﺷﺪ.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Determination of optimum conditions for production of antioxidant Peptides derived from hydrolysis of orange seed protein with alkalase enzyme

نویسندگان English

Seyadeh Narges Mazloomi 1
Alireza Sadeghi Mahoonak 2
mohammad ghorbani 2
Gholamreza Houshmand 3
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Gorgan University of Agricultural Sciences and Natural Resources
3 Mazandaran University of Medical Sciences
چکیده English

The use of enzymes for hydrolysis of protein sources is one of the common methods in the food processing. A hydrolysed protein is a complex mixture of peptides and amino acids that are obtained from hydrolysis by various enzymes, acids or alkali. These peptides play important biological role in the body. The orange seed is largely available from the orange juice industries wastes, and its defatted flour contains about 26% protein and can be used as a rich and cost-effective source for production of proteins and peptides of plant sources. In the present study, a protein isolate with high purity was extracted from defatted orange seed flour and then the protein was hydrolysed by using Alcalase enzyme in concentrations of 1, 1.5 and 3% and the hydrolysis time of 2-5 hours at temperature of 45-55 ° C at suitable pH for enzyme activity. Then the optimal conditions for the production of hydrolysed proteins with the highest antioxidant properties (DPPH radical scavenging activity, radical OH scavenging activity, ferric reducing activity and total antioxidant) were determined. Optimum treatment at determined conditions (temperature 54.8 °C, time 3.35 hr and ration of the enzyme to the substrate 1.7 % v/w) with antioxidant properties (DPPH radical scavenging activity (45.85%), radical OH scavenging activity (91.82%), ferric reducing activity (89.35%) and total antioxidant (39.68%) was obtained and antioxidant tests were performed on the optimal treatment for confirmation of the proposed values by software. The results showed that the hydrolysed protein derived from orange seed could be used in the foods formulation as a natural additive and also it can be used as a nutraceutical with high antioxidant ability.

کلیدواژه‌ها English

Protein
Hydrolysis
Peptide
Antioxidant
Orange seed
medicine
1. Jamdar. S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitor activity of peanut protein hydrolysate. Food Chem. 121, 178-184.
2. Penas, E., Prestamo, G., Gomez, R. (2004). High pressure and the enzymatic hydrolysis of soybean whey proteins. Food Chem. 85, 641-648.
3. Taha, S. F., Mohamed, S. S., Wagdy M. S., Mohamed, F. G. (2013). Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Appl Sci J. 21, 651-658.
4. Sharma, S., Singh, R., Rana, S. (2011). Bioactive Peptides: A Review. Int J Bioautomation. 15, 223-250.
5. Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality. Int Dairy J. 16, 945-960.
6. Samaranayaka, G. P. A., Li-Chan, C. Y. E. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J Fun Foods. 3, 229-254.
7. Torruco-Uco, J., Chel-Guerrero, L., Martı´nez-Ayala, A., Da´vila-Ortı´z, G., Betancur-Ancona, D. (2009). Angiotensin converting enzyme inhibitory and antioxidant activities of protein. LWT - Food Sci Technol. 42, 1597-1604.
8. Takenaka, A., Annaka, H., Kimura, Y., Aoki, H., Igarashi, K. (2003). Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Biosci Biotechnol Biochem. 67, 278-283.
9. Lahart, N., O’Callaghan, Y., Aherne, S. A., O’Sullivan, D. (2011). Extent of hydrolysis effects on casein hydrolysate bioactivity: Evaluation using the human Jurkat T cell line. Int Dairy J. 21, 777-782.
10. Cumby N, Zhong Y, Naczk M, Shahidi F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry 109(1): 144-148.
11. FAO UNCTAD (2004). From FAO data sited from: UNCTAD from FAO data )2004(.
12. Mohamed, B., El-Shenawi, M. (2013). Functional properties and In-vitro digestibility of bitter orange (Citrus aurantium) seed flour. Merit Research Journal of Agricultural Science and Soil Sciences. 1(3): 042- 047.
13. Samia El-Safy, F., Rabab, H., Abd El-Ghany, M.E. (2012). Chemical and Nutritional Evaluation of Different Seed Flours as Novel Sources of Protein. World Journal of Dairy & Food Sciences 7 (1): 59-65.
14. Kaur, M., Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicerarietinum L.) cultivars. Food Chemistry, 102:366-374.
15. Papalamprou, E.M., Doxastakis, G.I., Biliaderis C.G., Kiosseoglou, V. (2009). Influence of preparation methods on physiochemical and gelation properties of chickpea protein isolates. Food hydrocolloid, 23: 337-43.
16. Kinsella, J.E. 1976. Functional properties of proteins in foods: A survey. CRC Critical Reviews in Food Science and Nutrition, 7: 219-280.
17. Horax, R., Hettiarachchy, N., Over, K., Chen, P., Gbur, E. (2010). Extraction, fractionation and characterization of Bitter Melon seed proteins. Journal of Agricultural and Food Chemistry, 58: 1892-1897.
18. Villanueva, A., Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., Millán, F. (1999). Peptide Characteristics of Sunflower Protein Hydrolysates. Journal of the American Oil Chemists Society. 76: 1455-1460.
19. Guo, H., Kozuma, Y., & Yonekura, M. 2005. Isolation and properties of antioxidative peptides from water-soluble royal jelly protein hydrolysate. Food Science Technology Research. 11. 222–230.
20. Matsuoka,T., Kawashima,T., Nakamura, T.,Kanamaru,Y., Yabe, T. (2012). Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee,Apis mellifera. Apidologie.43:685–697.
21. Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., Xu, Y. F. (2013). Purification and characterization of a novel antioxidant peptide derived from blue mussel Mytilusedulis protein hydrolysate. Food chemistry. 138(2): 1713-1719.
22. AOAC Method 983.23. (1990). Fat in foods, chloroform–methanol extraction. InOfficial methods of analysis (15th ed., pp. 101–111). Washington, DC, USA:Association of Official Analytical Chemists
23. Umayaparvathia, S., Meenakshia, S., Vimalrajb, V., Arumugama, M., Sivagamic, G., Balasubramaniana, T. (2014). Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition. 4: 343–353.
24. Chang-Feng, Ch., Fa-Yuan, H., Bin, W., Tao, L., Guo-Fang, D. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods. 15: 301–313.
25. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269: 337-341.
26. Zhu, K.X., Zhou, H.M., Qian, H.F. (2006b). Proteins Extracted from Defatted Wheat Germ: Nutritional and Structural Properties. Cereal Chemistry, 83: 1. 69-75.
27. Nasri, N. A., Tinay, A. H. E. )2007(. Functional properties of fenugreek (Trigonellafoenumgreacum) protein concentrate. Food chemistry, 103:582-589.
28. Adebowale, K. O., Lawal, O. S. 2004. Comparative study of the functional properties of bambarra groundnut (Voandzeia subterranean), jack bean (Canavaliaensiformis) and mucuna bean (Mucunapruriens) flour. Food Research International, 37:355-365.
29. Chau, C. F., Cheung, P. C. K. 1998. Functional properties of flours prepared from three Chinese indigenous legume seeds. Food chemistry, 61:429-433.
30. Sun, Q., Shen, H., Leu, Y. 2011. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of Food Science and Technology, 21: 6646-6652.
31. Sarmadi, B. H., Ismail, A. )2010(. Antioxidative peptides from food proteins: a review. Peptides. 31:1949-1956.
32. Wiriyaphan, C., Chitsomboon, B., Yongsawadigu, J. )2012(. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry. 132:104–111.
33. Khantaphant, S., Benjakul, S. (2008). Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology. 151, 110-115.
34. Bougatef. A., Hajji. M., Balti. R. (2010). Antioxidant and free radical – scavenging activities of smoth hound muscle protein hydrolysates obtained by gastro intestinal proteases. Journal of food chemistry.1198-1255.
35. Guerar, F., Guimas, l., Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular catalysis B: Enzymatic.19, 489-498.
36. Je, J. Y., Lee, M. H., Lee, K. h. Ahn, C. B. (2009). Antioxidant and hypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International. 42, 1266-1272.
37. Taha, F.S., Mohamed, S.S., Wagdy, S.M., and Mohamed, G.F. (2013). Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Applied Science Journal. 21: 5.651-658.
38. Guerar, F., Guimas, l., Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular catalysis B: Enzymatic. 19, 489-498.
39. Oveisi pour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R., Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry.115, 238-242.
40. Je, J. Y., Lee, M. H., Lee, K. h. Ahn, C. B. (2009). Antioxidant and hypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International. 42, 1266-1272.
41. Taha, S. F., Mohamed, S. S., Wagdy M. S., Mohamed, F. G. (2013). Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Applied Sciences Journal. 21: 651-658.
42. Yan, Q. J., Huang, L. H., Sun, Q., Jiang, Z. Q., Wu, X. (2015). Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolysed by multiple proteases. Food Chemistry. 179, 290-295.
43. Jin, D.X., Liu, X., Zheng, X., Wang, X., He, J. (2016). Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry. 204, 427-436.
44. Sogi, D. S. (2001). Functional properties and characterization of tomato waste seed proteins. PHD Thesis. Amritsar, India: Guru Nanak Dev Univ. 69-95.
45. Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry. 121, 178-184.
46. Qian, Z. J., Jung, W. K., Byun, H. G., Kim, S. K. (2008). Protective effect of an ant oxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technol. 99: 3365-3371.
47. Shuguo, S., Meihu, M., Qinlu, L., Tao, Y., Huihui, N. (2013). Systematic Investigation of Antioxidant Activity of Egg White Protein Hydrolysates Obtained by Pepsin. Advance Journal of Food Science and Technology. 5(1): 57-62.
48. Lee, S. H., Qian, Z. J., Kim, S. K. (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry. 118, 96-102.
49. Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M., C., Barkia, A., Nasri, M. (2015). Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray (Raja clavata) muscle. Journal of Proteomics. 115, 28- 37.
50. Yang, B., Yang, H., Li, J., Li, Z., Jiang, Y. (2011). Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chemistry. 124: 551-555.
51. Torruco-Uco, J., Chel-Guerrero, L., Martı´nez-Ayala, A., Da´vila-Ortı´z, G., Betancur-Ancona, D. (2009). Angiotensin converting enzyme inhibitory and antioxidant activities of protein. LWT - Food Sci Technol. 42: 1597-1604.
52. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114: 1198-1205.