تاثیر شستشو با آب مقطر، اسید سیتریک و کلرید کلسیم بر ترکیب شیمیایی پروتئین ضایعات ماهی قزل آلای رنگین کمان و فعالیت آنتی اکسیدانی و ضد دیابت پروتئین هیدرولیز

نویسندگان
1 دانشگاه ارومیه
2 دانشگاه تربیت مدرس
3 وزارت جهاد کشاورزی
چکیده
در این مطالعه تاثیر پیش تیمارهای مختلف شامل: روش 1- مینس ضایعات (BP-FPI)، روش 2- شستشوی مینس ضایعات با آب (WBP-FPI)، روش 3- شستشوی مینس ضایعات با اسید سیتریک + کلرید کلسیم (CaCi-BPFPI)، روش 4- شستشوی مینس ضایعات با اسید سیتریک + کلرید کلسیم + شستشوی دوم با آب (CaCi-W- BPFPI) و روش 5- شستشوی مینس ضایعات با آب + شستشوی دوم با اسید سیتریک + کلرید کلسیم (W-CaCi-BPFPI) بر ترکیب شیمیایی پروتئین ایزوله از ضایعات ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss) بررسی گردید. شستشو با آب مقطر (روش 2) و با آب مقطر + مخلوط اسید سیتریک و کلرید کلسیم (روش 5) تاثیر زیادی بر کاهش آهن هم و فسفولیپید داشت (05/0 P <). روش شستشو تاثیر معنی داری بر راندمان استخراج پروتئین ایزوله داشت بطوریکه کمترین درصد استخراج (4/9 درصد) مربوط به روش 5 بوده است (05/0 P <). پروتئین های حاصل از روشهای 2 تا 5 از روشنایی بالاتری نسبت به پروتئین تولید شده بطور مستقیم از ضایعات داشتند (05/0 P <). روش 1 منجر به بالاترین قرمزی (36/9) در پروتئین گردید ولی نمونه 5 دارای کمترین رنگ قرمزی (19/1) بود (05/0 P <). پروتئین هیدرولیز تولید شده از پروتئین روش 5 دارای فعالیت آنتی اکسیدانی در غلظت های مختلف بوده است. همچنین، وجود پپتید های کوچک در پروتئین هیدرولیز سبب فعالیت ضد دیابت در آن گردید. نتیجه نشان داد که شستشو با آب مقطر به تنهایی (روش 2) و یا در ترکیب با اسید سیتریک +کلرید کلسیم (روش 5) برای تهیه پروتئین ایزوله با مقدار کمتر ترکیبات پرواکسیدانی از ضایعات ماهی قزل آلای رنگین کمان مناسب می باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of washing with distilled water, citric acid and calcium ion on composition of protein isolates from rainbow trout by-product and antioxidant and anti-diabetic activities of hydrolysate

نویسندگان English

Mehdi Nikoo 1
Hassan Ahmadi Gavlighi 2
Mehran Yasemi 3
1 Urmia University
2 Tarbiat Modares University
3 Ministry of Agriculture Jihad
چکیده English

In this study, the effect of different treatments including method 1- homogenized by-product (BP-FPI), method 2- washing of homogenized by-product by distilled water (WBP-FPI), method 3- washing of homogenized by-product by CaCl2-citric acid (CaCi-BPFPI), method 4- CaCl2-citric acid treated –washing by distilled water (CaCi-W- BPFPI), method 5- washing by distilled water- CaCl2-citric acid treatment (W-CaCi-BPFPI) on composition of protein isolate from rainbow trout (Oncorhynchus mykiss) by-product were investigated. Washing by distilled water (method 2) and distilled water + combination of CaCl2 + citric acid (method 5) had significant effect on heme iron and phospholipid (P < 0.05). Washing methods influenced protein yield and the lowest yield (9.4%) was obtained using method 5 (P < 0.05). Washing-derived proteins were lighter in color compared with that obtained from by-product. Method 1 resulted in higher redness (9.36) while that obtained with method 5 showed the lowest redness (1.19) (P < 0.05). Protein hydrolysate produced from method 5 protein isolate had high antioxidant activity in a dose-dependent manner. Additionally, the presence of small peptides in hydrolysate contributed to its anti-diabetic activities. Results indicated that washing by distilled water (method 2) or combined with CaCl2 + citric acid (method 5) is necessary for production of protein isolate from rainbow trout processing by-product.

کلیدواژه‌ها English

Rainbow trout
By-product
Washing methods
Composition
Antioxidant activity
Anti-diabetic activity
[1] FAO. (2016). The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. In (pp. 200). Rome: Food and Agriculture Organization of the United Nations.
[2] Pérez-Gálvez, R., Espejo-Carpio, F. J., Morales-Medina, R., García-Moreno, P. J., Guadix-Escobar, A., & Guadix-Escobar, E. (2018). Fish discards as source of health-promoting biopeptides. In Alternative and Replacement Foods (pp. 177-204).
[3] Šližytė, R., Daukšas, E., Falch, E., Storrø, I., & Rustad, T. (2005). Characteristics of protein fractions generated from hydrolysed cod (Gadus morhua) by-products. Process Biochemistry, 40(6), 2021-2033.
[4] Norris, R., Harnedy, P. A., & FitzGerald, R. J. (2013). Antihypertensive peptides from marine origin. In B. Hernández-Ledesma & M. Herrero (Eds.), Bioactive Compounds from Marine Foods: Plant and Animal Sources (pp. 27-56): Wiley-Blackwell.
[5] Opheim, M., Šližytė, R., Sterten, H., Provan, F., Larssen, E., & Kjos, N. P. (2015). Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—Effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochemistry, 50(8), 1247-1257.
[6] Harnedy, P. A., & FitzGerald, R. J. (2013). Bioactive proteins and peptides from macroalgae, fish, shellfish and marine processing waste. In S.-K. Kim (Ed.), Marine proteins and peptides: Biological activities and applications (pp. 5–39). West Sussex: John Wiley & Sons, Ltd.
[7] Khantaphant, S., Benjakul, S., & Ghomi, M. R. (2011). The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology, 44(4), 1139-1148.
[8] Liang, Y., & Hultin, H. O. (2005). Separation of membranes from acid-solubilized fish muscle proteins with the aid of calcium ions and organic acids. Journal of Agricultural and Food Chemistry, 53(8), 3008-3016.
[9] Pires, C., Teixeira, B., Cardoso, C., Mendes, R., Nunes, M. L., & Batista, I. (2015). Cape hake protein hydrolysates prepared from alkaline solubilised proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity. Process Biochemistry, 50(6), 1006-1015.
[10] Cheng, E. H., & Ockerman, H. W. (2004). Effect of ascorbic acid with tumbling on lipid oxidation of precooked roast beef 1. Journal of Muscle Foods, 15(2), 83-93.
[11] Clark, E. M., Mahoney, A. W., & Carpenter, C. E. (1997). Heme and total iron in ready-to-eat chicken. Journal of Agricultural and Food Chemistry, 45, 124-126.
[12] Yu, Z., Yin, Y., Zhao, W., Liu, J., & Chen, F. (2012). Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chemistry, 135(3), 2078-2085.
[13] Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2014). In vitro α-glucosidase, angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory properties of brewers' spent grain protein hydrolysates. Food Research International, 56, 100-107.
[14] Senphan, T., & Benjakul, S. (2014). Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. Journal of Functional Foods, 6, 147–56.
[15] Aluko, R. (2015). Amino acids, peptides, and proteins as antioxidants for food preservation. In F. Shahidi (Ed.), Handbook of antioxidants for food preservation (pp. 105–140). Cambridge: Woodhead Publishing Limited.
[16] Kim, S., & Wijesekara, I. (2010). Development and biological activities of marine derived bioactive peptides: A review. Journal of Functional Foods, 2, 1–9.
[17] Li-Chan, E.C.Y. (2015). Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1, 28–37.
[18] Nikoo, M., & Benjakul, S. (2015). Potential application of seafood-derived peptides as bifunctional ingredients, antioxidant-cryoprotectant: A review. Journal of Functional Foods, 19, 753-764.
[19] Wang, B., Gong, Y. D., Li, Z. R., Yu, D., Chi, C. F., & Ma, J. Y. (2014). Isolation and characterisation of five novel antioxidant peptides from ethanol-soluble proteins hydrolysate of spotless smoothhound (Mustelus griseus) muscle. Journal of Functional Foods, 6, 176–185.
[20] Samaranayaka, A.G.P., & Li-Chan, E.C.Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3, 229–254.
[21] Matsui, T., Oki, T., & Osajima, Y. (1999). Isolation and identification of peptidic α-Glucosidase inhibitors derived from sardine muscle hydrolysate. Z. Naturforsch, 54, 259-263.
[22] Oki, T., Matsui, T., & Osajima, Y. (1999). Inhibitory effect of α-glucosidase inhibitors varies according to its origin. Journal of Agricultural and Food Chemistry, 47(2), 550-553.
[23] Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781.
[24] Yarnpakdee, S., Benjakul, S., Nalinanon, S., & Kristinsson, H. G. (2012). Lipid oxidation and fishy odour development in protein hydrolysate from Nile tilapia (Oreochromis niloticus) muscle as affected by freshness and antioxidants. Food Chemistry, 132(4), 1781-1788.