بررسی پروفایل اسید های آمینه و اسیدهای چرب موجود در قارچ خوراکی Pleurotus ostreatus در واکنش به عناصر روی و آهن

نویسندگان
1 دانشجوی دکتری بیوتکنولوژی کشاورزی، پژوهشکده بیوتکنولوژی، دانشگاه شیراز، شیراز، ایران
2 دانشیار گروه بیوتکنولوژی، پژوهشکده بیوتکنولوژی، دانشگاه شیراز، شیراز، ایران
3 پژوهشکده بیوتکنولوژی، دانشگاه شیراز، شیراز، ایران
4 دانشکده تغذیه، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
چکیده
هدف از این تحقیق تعیین پروفایل اسید های چرب و اسید های آمینه موجود در قارچ Pleurotus ostreatus در مواجهه با عناصر روی و آهن می باشد. اثر سولفات روی، سولفات آهن، اکسید روی و اکسید آهن با غلظت 80 میکرو مولار بر روی ترکیب اسید چرب و آمینواسید موجود در قارچ P. ostreatus مورد بررسی قرار گرفت. اسید آمینه کل با استفاده از آب: متانول: محلول اسید فرمیک استخراج شد و به وسیله کروماتوگرافی مایع- طیف سنجی جرمی متوالی (LC-MS/MS) مورد آنالیز قرار گرفت. اسید چرب با استفاده از استخراج لیپید و فرایند متیلاسیون با استفاده از متانول اسیدی: سالین نرمال: هگزان و کروماتوگرافی گازی- طیف سنجی جرمی (GC-MS) آنالیز شد. اسیدهای آمینه اصلی موجود در قارچ P. ostreatus عبارتند از آرژنین، گلوتامین، گلوتامیک ، آلانین، سرین، آسپارتیک اسید، لیزین، ترئونین، هیستیدین، والین و پرولین. اکسید آهن باعث افزایش معنی دار میزان اسیدهای آمینه کل، ضروری و غیر ضروری شد. غالب­ترین اسیدهای چرب موجود در قارچ P. ostreatus عبارتند از اسید لینولئیک، اسید پالمیتیک، اسید اولئیک، اسید استئاریک، اسید پنتادکانوئیک و اسید هپتادکانوئیک. اکسید روی باعث افزایش معنی دار اسیدهای چرب تکی، امگا 7 و امگا 9 و کاهش معنی دار اسید چرب غیر اشباع پلی و امگا 6 گردید. در مجموع بر اساس نتایج حاصل از این پژوهش، آهن برای القای اسیدآمینه پیشنهاد می­شود در حالیکه روی برای تولید اسید چرب توصیه می­گردد.
کلیدواژه‌ها

عنوان مقاله English

Evaluation of Pleurotus ostreatus fatty acid and amino acid profile in response to zinc and iron

نویسندگان English

kamran safavi 1
Gholamreza Kavoosi 2
Ali Niazi 3
sayyed morteza safavi 4
1 PHD student, Institute of Biotechnology, Shiraz University, Shiraz, Iran.
2 Assistant Professor, Institute of Biotechnology, Shiraz University, Shiraz, Iran.
3 Institute of Biotechnology, Shiraz University, Shiraz, Iran.
4 School of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran.
چکیده English

The aim of this study was to determine the content of fatty acids and amino acids profile in response to zinc and iron element in Pleurotus ostreatus. The influence of ZnSO4, FeSO4, ZnO and Fe2O3 at 80 µM on amino acid and fatty acid composition of P. ostreatus was investigated. Total amino acid was extracted using water: methanol: formic acid extraction solution and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fatty acid was extracted by lipid extraction and methylation procedure using acidic methanol: normal saline: hexane solution followed by gas chromatography-mass spectrometry (GC-MS). The main amino acids of P. ostreatus were arginine, glutamine, glutamic acid, alanine, serine, aspartic acid, lysine, threonine, histidine, valine and proline. Fe2O3 strongly lead a significant increase in essential and non-essential amino acids content of P. ostreatus. The most prominent fatty acids in P. ostreatus were linoleic acid, palmitic acid, oleic acid, stearic acid, pentadecanoic acid and heptadecanoic acid. ZnO strongly lead a significant increase in monounsaturated fatty acid (MUFA), omega-7 and omega-9 and significant decrease in polyunsaturated fatty acid (PUFA) and omega-6 fatty acids content of P. ostreatus. Iron is recommended for induction amino acid while zinc recommended for fatty acid production.

کلیدواژه‌ها English

Pleurotus ostreatus
Essential fatty acid
Essential amino acid
1.Roncero-Ramos I, Delgado-Andrade C. 2017. The beneficial role of edible mushrooms in human health. Current Opinion in Food Science.;14:122-128.
2.Stephan A, Ahlborn J, Zajul M, Zorn H. 2018. Edible mushroom mycelia of Pleurotus sapidus as novel protein sources in a vegan boiled sausage analog system: functionality and sensory tests in comparison to commercial proteins and meat sausages. European Food Research and Technology.;244(5):913-924.
3.Zhang L, Li CG, Liang H, Reddy N. 2017. Bioactive Mushroom Polysaccharides: Immunoceuticals to Anticancer Agents. Journal of Nutraceuticals and Food Science.;2(2)1-2.
4.Xia Z, Cholewa J, Zhao Y, Shang H-Y, Yang Y-Q, Araújo Pessôa K, et al. 2017. Targeting inflammation and downstream protein metabolism in sarcopenia: a brief up-dated description of concurrent exercise and leucine-based multimodal intervention. Frontiers in physiology.;8:1-7.
5.Cholewa JM, Dardevet D, Lima-Soares F, de Araújo Pessôa K, Oliveira PH, dos Santos Pinho JR, et al. 2017. Dietary proteins and amino acids in the control of the muscle mass during immobilization and aging: role of the MPS response. Amino acids.;49(5):811-820.
6.Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. 2017. Significance of long chain polyunsaturated fatty acids in human health. Clinical and translational medicine.;6(1):25-32.
7.Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. 2017. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutritional neuroscience.;1-20.
8.Liu H, Xu J, Li X, Zhang Y, Yin A, Wang J, et al. 2015. Effects of microelemental fertilizers on yields, mineral element levels and nutritional compositions of the artificially cultivated Morchella conica. Scientia Horticulturae.;189:86-93.
9.Poniedziałek B, Mleczek M, Niedzielski P, Siwulski M, Gąsecka M, Kozak L, et al. 2017. Bio-enriched Pleurotus mushrooms for deficiency control and improved antioxidative protection of human platelets? European Food Research and Technology.;243(12):2187-2198.
10.Turło J, Gutkowska B, Herold F, Klimaszewska M, Suchocki P. 2010. Optimization of selenium-enriched mycelium of Lentinula edodes (Berk.) pegler as a food supplement. Food Biotechnology.;24(2):180-196.
11.Poursaeid N, Azadbakht A, Balali GR. 2015. Improvement of Zinc Bioaccumulation and Biomass Yield in the Mycelia and Fruiting Bodies of Pleurotus florida Cultured on Liquid Media. Applied biochemistry and biotechnology.;175(7):3387-3396.
12.Friedman M. 2004. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of agricultural and food chemistry.;52(3):385-406.
13.Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, et al. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource technology.;155:330-333.
14.Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry.;72, 248-254.
15.Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM. 2014. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Journal of Chromatography B.;944:166-174.
16.Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR, Harvatine KJ. 2015. Fatty acid profile of wild and cultivated edible mushrooms collected from Ethiopia. Journal of Nutrition and Food Sciences.;5(3):1-5.
17.Sun L, Liu Q, Bao C, Fan J. 2017. Comparison of free total amino acid compositions and their functional classifications in 13 wild edible mushrooms. Molecules.; 22(3):350.
18.Li W, Gu Z, Yang Y, Zhou S, Liu Y, Zhang J. 2014. Non-volatile taste components of several cultivated mushrooms. Food chemistry.;143:427-431.
19.Manninen H, Rotola-Pukkila M, Aisala H, Hopia A, Laaksonen T. 2018. Free amino acids and 5′-nucleotides in Finnish forest mushrooms. Food chemistry.;247:23-28.
20.Ribeiro B, de Pinho PG, Andrade PB, Baptista P, Valentão P. 2009. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal.;93(1):29-35.
21.Beluhan S, Ranogajec A. 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food chemistry.;124(3):1076-1082.
22.Tsai S-Y, Huang S-J, Lo S-H, Wu T-P, Lian P-Y, Mau J-L. 2009. Flavour components and antioxidant properties of several cultivated mushrooms. Food Chemistry.;113(2):578-584.
23.Yang J-H, Lin H-C, Mau J-L. 2001. Non-volatile taste components of several commercial mushrooms. Food chemistry.;72(4):465-471.
24.Zhang Y, Venkitasamy C, Pan Z, Wang W. 2013. Recent developments on umami ingredients of edible mushrooms–A review. Trends in food science & technology.;33(2):78-92.
25.Tan L, Zhuo R, Li S, Ma F, Zhang X. 2017. Differential expression of desaturase genes and changes in fatty acid composition of Mortierella sp. AGED in response to environmental factors. Journal of the Science of Food and Agriculture.;97(6):1876-1884.
26.Sajbidor J, Kozelouhov’a D, Cert’ik M. 1992. Influence of some metal ions on the lipid content and arachidonic acid production byMortierella sp. Folia Microbiologica.;37(6):404-406.
27.Hansson L, Dostálek M. 1988. Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Applied Microbiology and Biotechnology.;28(3):240-246.
28.Yilmaz N, Solmaz M, Türkekul İ, Elmastaş M. 2006. Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry.;99(1):168-174.
29.Abugri D, McElhenney W, Willian K. 2016. Fatty acid profiling in selected cultivated edible and wild medicinal mushrooms in the Southern United States. J Exp Food Chem.;2:1-7.
30.Pedneault K, Angers P, Avis TJ, Gosselin A, Tweddell RJ. 2007. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var.‘citrino-pileatus’ grown at different temperatures. mycological research.;111(10):1228-1234.
31.Gunc Ergonul P, Akata I, Kalyoncu F, Ergönül B. 2013. Fatty acid compositions of six wild edible mushroom species. The Scientific World Journal.;1-4
32.Pickens CA, Pereira MdFA, Fenton JI. 2017. Long-chain ω-6 plasma phospholipid polyunsaturated fatty acids and association with colon adenomas in adult men: a cross-sectional study. European Journal of Cancer Prevention.;26(6):497-505.
33.Ohlsson L. 2010. Dairy products and plasma cholesterol levels. Food & nutrition research.;54(1):5124-5128.
34.Zhang Y, Dong L, Yang X, Shi H, Zhang L. 2011. α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids in health and disease.;10(1):81-90.
35.Mensink RP. 2005. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids.;40(12):1201-1205.
36.Kim K-B, Nam YA, Kim HS, Hayes AW, Lee B-M. 2014. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food and chemical toxicology.;70:163-178.