بهینه‌سازی فرآوری ماست کم‌چرب پری‌بیوتیک حاوی اینولین تحت تاثیر دما و نیروی برشی مختلف

نویسندگان
دانشگاه آزاد اسلامی واحد تبریز
چکیده
آگاهی از روابط بین متغیرهای مختلف طی فرآیند جایگزینی چربی از طریق انجام مدل­ سازی می­ تواند راه حل مناسبی برای کنترل بهینه شرایط فرآیند و در نتیجه افزایش کیفیت ماست کم­ چرب نهایی باشد. در این پژوهش با به کارگیری روش آماری سطح پاسخ و طرح مرکب مرکزی اثر استفاده از اینولین در سه غلظت (0، 3 و 6 درصد) به عنوان جایگزین چربی، اعمال فرایند حرارتی در سه سطح (70، 82/5 و 95 درجه سلسیوس) و همزدن در سه سطح (3000، 6000 و 9000 دور بر دقیقه) بر قابلیت تشکیل ژل اینولین و خواص کیفی نمونه­ های ماست کم ­چرب مورد ارزیابی قرار گرفت؛ که معادلات به دست آمده بیانگر آن بود که متغیرهای مستقل تأثیر معنی­ داری بر پارامترهای مورد بررسی داشتند (0/05>P). موثرترین متغیر در بین پارامترهای مورد بررسی اثر مستقل غلظت اینولین بود که در غلظت­ های بالا به رغم بهبود بافت ماست­ های کم ­چرب تولید شده دارای ویژگی­ های نامطلوبی از نظر خواص کیفی، نمرات حسی و تغییرات رنگی بود. همچنین متغیر دمای فرآیند حرارتی در بیشتر تیمارهای مورد بررسی دارای اثرات معنی­ داری بوده که با اثر بر قابلیت تشکیل ژل ماست باعث بهبود خواص کیفی شد. به­ طورکلی بهینه­ سازی متغیرهای مورد بررسی نشان داد، نمونه­ بهینه از نظر فاکتورهای مورد بررسی جهت فرآوری ماست پری­ بیوتیک حاوی اینولین، نمونه ماست حاوی 3 درصد اینولین با تیمار حرارتی 82/5درجه سلسیوس و نیروی برشی6000 دور بر دقیقه جهت همگن سازی بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of low fat prebiotic yogurt processing containing inulin at different temperatures and shear stresses

نویسندگان English

mitra soofi
Ainaz Alizadeh
Seyede Elham Mousavi Kalajahi
Tabriz Branch, Islamic Azad University
چکیده English

Recognizing the relations between different variables of fat replacing, modeling could contribute to an optimum control of the process and accordingly improve the quality of the final low fat product such as yogurt. In the present study, the Response Surface Methodology (RSM) and Central Composite Design (CCD) has been applied to investigate the effects of different concentrations of inulin (0, 3 and 6%) as a fat replacer, heat treatment (70, 82.5 and 95°c) and various shear stresses using a stirrer (3000, 6000 and 9000 RPM) on gelling properties of yogurt and also different quality attributes of a low fat yogurt. The equations obtained from the study showed that undependent variables had significant effects on the measured attributes (p<0.05). The most effective factor was inulin concentration that improved the low fat yogurt texture, although higher concentrations had negative effect on sensory properties and color. On the other hand, heat treatment had significant effect on gelling ability of yogurt. In sum, sample with 3% inulin, processed at 82.5°C and stirred at 6000 RPM was selected as optimum condition for prebiotic yogurt processing by inulin.

کلیدواژه‌ها English

Heat Treatment
Inulin
response surface methodology
Shear stress
[1] Brennan, C. S., & Tudorica, C. M. (2008). Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: comparative study of the utilization of barley beta-glucan, guar gum and inulin. International Journal of Food Science and Technolo, 43, 824–833.
[2] Dave, P. (2012). Rheological properties of low-fat processed cheese spread made with inulin as a fat replacer. University of Wisconsin-Stou, 1-53.
[3] Fadaei, V., Poursharif, K., Daneshi, M., & Honarvari, M. (2012). Chemical characteristics of low-fat whey less cream cheese containing inulin as fat replacer. European Journal of Experimental Biology, 2(3), 690-694.
[4] Boeni, S., & Pourahmad, R. (2012). Use of inulin and probiotic lactobacilli in synbiotic yogurt production. Annals of Biological Research, 3(7), 3486-3491.
[5] Kucukcetin, A. (2008). Effect of heat treatment of skim milk and final fermentation pH on graininess and roughness of stirred yogurt. International Journal of Dairy Technology, 61(4), 385-390.
[6] Loveday, S. M., Sarkar, A., & Singh, H. (2013). Innovative yoghurts:Novel processing technologies for improving acid milk gel texture. Trends in Food Science & Technology, 33, 5-20.
[7] Oliveira, R. P. S., Perego, P., Converti, A., & Oliveira, M. N. (2009). The effect of inulin as a prebiotic on the production of probiotic fibre-enriched fermented milk. International Journal of Dairy Technology, 62(2), 195-203.
[8] Tarrega, A., Rocafull, A., & Costell, E. (2010). Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. Food Science and Technology, 43, 556–562.
[9] Cruz, A. G., Cavalcanti, R. N., Guerreiro, L. M. R., SantAna, A. S., Nogueira, L. C., Oliveira, C. A. F., Deliza, R., Cunha¸ R. L., Cunha, R. L., Faria, J. A. F., & Bolini, H. M. A. (2013). Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. Journal of Food Engineering, 114, 323–330.
[10] Kim, Y., Faqih, M. N., & Wang, S. S. (2001). Factors affecting gel formation of inulin. Journal of Carbohydrate Polymers, 46, 135-145.
[11] Guggisberg, D., Cuthbert-Steven, J., Piccinali, P., Butikofer, U., & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19, 107–115.
[12] Mazloomi, S.M., Shekarforoush, S. S., Ebrahimnejad, H., & Sajedianfard, J. (2011). Effect of adding inulin on microbial and physico- chemical properties of low fat probiotic yogurt. Iranian Journal of Veterinary Research, 12(2), 93-98.
[13] Villegas, B., & Costell, E. (2007). Flow behaviour of inulin–milk beverages. Influence of inulin average chain length and of milk fat content. International Dairy Journa, 17, 776–781.
[14] Soofi, M., & Alizadeh, A. (2014). Applications of inulin in food industries: A Review. Journal of Middle East Applied Science and Technology, 4(4), 109-113.
[15] Paseephol, T., Small, D., & Sherkat, F. (2008). Rheology and texture of set yogurt as affected by inulin addition. Journal of Texture Studies, 39, 617-634.
[16] Meyer, D., Bayarri, S., Tárrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Journal of Food Hydrocolloids, 25, 1881-1890.
[17] AOAC (1997) Official Methods of Analysis. 16th ed., Association of Official Analytical Chemists, Washington, DC.
[18] Sodini, I., Montella, J., & Tong, P. S. (2005). Physical properties of yogurt fortified with various commercial whey protein concentrates. Journal of Science Food Agricalture, 85, 853–859.
[19] Sahan, N., Yasar, K., & Hayaloglu, A. A. (2008). Physical, chemical and flavor quality of non- fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Journal of Food Hydrocolloids, 22, 1291-1297.
[20] Yam, K. L., & Papadakis, S. E. (2004). A simple digital imaging method for easuring and analyzing color of food surfaces. Journal of Food Engineering, 61, 137-142.
[21] Isik, U., Boyacioglu, D., Capanoglu, E., & Erdil, D. N. (2011). Frozen yogurt with added inulin and isomalt. American Dairy Science Association, 94, 1647-1656.
[22] Kapitula, M., & Klebukowska, L. (2009). Investigation of the potential for using inulin HPX as a fat replacer in yoghurt production. International Journal of Dairy Technology, 62(2), 209-214.
[23] Aryana, K. J., Plauche, S., Rao, R. M., Mcgrew, P., & Shah, N. P. (2007). Fat-Free Plain yogurt manufactured with inulins of various chain lengths and lactobacillus acidophilus. Journal of Food Science, 72(3), 79-84.
[24] Kip, P., Meyer, D., & Jellema, R. H. (2006). Inulins improve sensory and textural properties of low-fat yoghurts. International Dairy Journal, 16, 1098–1103.
[25] Tarrega, A., Torres, J. D., & Costell, E. (2011). Influence of the chain-length distribution of inulin on the rheology and microstructure of prebiotic dairy desserts. Journal of Food Engineering, 104, 356–363.