ارزیابی و مقایسه خصوصیات فیتوشیمیایی و ظرفیت آنتی‌اکسیدانی برخی ریز میوه‌های دارویی جمع‌آوری شده از منطقه خان‌درسی ارومیه

نویسندگان
1 دانش آموخته کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه
2 استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده
در سال­های اخیر با توجه به مشکلات سلامتی و تغذیه­ای استفاده از آنتی­اکسیدان­های سنتزی در فرآوری مواد غذایی، بهره­گیری از گیاهان دارویی و ترکیبات موثره­ی آنها به عنوان منابع طبیعی که دارای خاصیت آنتی­اکسیدانی هستند، مورد توجه محققین قرار گرفته است. در این مطالعه خصوصیات فیتوشیمیایی و آنتی­اکسیدانی 15 ژنوتیپ از ریز میوه­های مختلف (عروسک پشت پرده، تاج ریزی، تمشک، زالزالک (دو گونه)، زرشک (چهار گونه)، رز (سه گونه)، آقطی (سه گونه)) مورد ارزیابی قرار گرفت. پس از شناسایی گونه­ها، استخراج نمونه­ها با استفاده از دستگاه اولتراسونیک انجام شد. تنوع فیتوشیمیایی ریز میوه­ها بر اساس محتوای فنول کل (روش فولین سیکالتو)، فلاونوئید کل (روش آلومینیوم کلراید)، کاروتنوئید کل، کلروفیل a، b و کل (روش لیچن تالر) و فعالیت آنتی­اکسیدانی (روش DPPH) ارزیابی گردید. نتایج مطالعه نشان داد ریز میوه­های جمع­آوری شده، تفاوت­های معنی­داری )سطح احتمال 1 درصد( از نظر خصوصیات فیتوشیمیایی مورد مطالعه دارند. بیشترین میزان فنول (mg GAE/g FW 096/5) و فلاونوئید کل (mg Qu/100g FW 433/14) در ژنوتیپ G3 (Rubus ulmifolius sub sp. sanctus) و کمترین میزان فنول (mg GAE/g FW 315/0) و فلاونوئید کل (mg Qu/100g FW 8/0) در ژنوتیپ G1 (Physalis alkekengi) مشاهده شد. همچنین بیشترین کاروتنوئید کل (μg/g FW 508/20) در ژنوتیپ G13 (sambucus nigra marginata) گزارش شد. بیشترین فعالیت آنتی­اکسیدانی در میوه ژنوتیپ G3 (Rubus ulmifolius sub sp. sanctus) با 634/86 درصد مشاهده شد. این نتایج پیشنهاد می­کنند که میوه­های مختلف به ویژه تمشک دارای منابع غنی از آنتی­اکسیدان­های طبیعی بوده و می­توانند در صنایع غذایی و دارویی کاربرد فراوان داشته باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation and comparison of phytochemical and antioxidant capacity of some small fruits collected from Urmia Khan-Dareh-si region

نویسندگان English

Ghader Ghasemi 1
Abolfazl Alirezalu 2
Shirin Rahmanzadeh Ishkeh 1
1 M. Sc of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran,
2 Assistant Professor of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده English

Recently, due to healthier and nutritional problems of synthetic antioxidants in food processing, using of herbal medicine and its effective components as a natural resources with antioxidant properties have been evaluated. This study was accomplished in order to examine phytochemical and antioxidant capacity of different small fruits in 15 accessions (Physalis, Solanum luteum, Raspberry, Hawthron, Barberry, Rose and Elderberry). After species identification, extraction of samples was conducted using ultrasonic device. Total phenolic content, total flavonoid content, total carotenoid and chlorophyll and Antioxidant capacity were determined by using Folin–Ciocalteu assays, aluminum chloride method, Lichtentaler method, DPPH respectively. The results showed that significant difference (p≤ 0.01) among small fruits phytochemical properties. Total phenolic content was in its highest value (5.096 mg GAE/g FW) in the genotype of G3 (Rubus ulmifolius sub sp. sanctus), whereas the lowest level (0.315 mg GAE/g FW) was found in the genotype of G1 (Physalis alkekengi). Total flavonoid content was in its highest value (14.433 mg /100g FW) in the genotype of G3 (Rubus ulmifolius sub sp. sanctus), whereas the lowest level (0.8 mg /100g FW) was found in the genotype of G1 (Physalis alkekengi). The highest level of total carotenoid content (20.508 μg/g FW) was found in G13 (sambucus nigra marginata). The highest level of antioxidant capacity in DPPH assays (Rubus ulmifolius sub sp. sanctus) were found in G3 (86.634 %). These results showed that different small fruits especially Rubus promising sources of natural antioxidants and other bioactive compounds beneficial to be used in the food or the pharmaceutical industries.

کلیدواژه‌ها English

Medicinal small fruits
phenol
flavonoid
Antioxidant activity
phytochemical
[1] Borneo, R., Leon, E.A., Aguirre, A., Ribotta, P. and Cantero, J.J., 2008. Antioxidant capacity of medicinal plants from the Province of Cordoba (Argentina) and their in vitro testing in model food system. Food Chemistry, 112: 664-670.
[2] Kordi tamandani, E., Valizadeh, J. and Valizadeh, M., 2014. In vitro production of secondary metabolites in Cicer spiroceras using elicitors. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 3(2): 48-56.
[3] Mishra, K.‌P., Ganju, L., Sairam, M., Banerjee, P.K. and Sawhney, R.C., 2008. A review of high throughput technology for the screening of natural products. Biomedicine and Pharmacotherapy, 62: 94-98.
[4] Dawidowicza, A.‌L., Wianowska, D. and Baraniak, B., 2006. The antioxidant properties of alcoholic extracts from sambacus nigra L. (antioxidant properties of extracts). Journal of LWT-Food Science and Technology, 39: 308-315.
[5] Nouri, S., Kiasat, A.R., Kolahi. M., Mirzajani, R. and Seyednejad, S.M., 2016. Phytochemical studies, antioxidants and various optimization methods in order to determine the best method of extracting curcumin extract ethanol from the plant Curcuma longa L.Eco-phytochemical Journal of Medicinal Plants, 11(3): 1-11.
[6] Mohajerani, M., 2012. Antioxidant Activity and Total Phenolic Content of Nerium oleander L. Grown in North of Iran. Iranian Journal of Pharmaceutical Research, 11(4): 1121-1126.
[7] Tlili, N., Mejri, H., Anouer, F., Saadaoui, E., Khaldi, K. and Nasri, N., 2015. Phenolic profile and antioxidant activity of Capparis spinosa seed sharvested from different wild habitats Nizar. Industrial Crops and Products, 76: 930–935.
[8] Morais, D.R., Rotta, E.M, Sargi, SC., Schmidt, E.M., Bonafe, E.G., Eberlin, M.N., Sawaya, A.C. and Visentainer, J.V., 2015. Antioxidant activity, phenolics and UPLC–ESI–MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77: 392-399.
[9] Ebrahimzadeh, M.A., Pourmorad, F. and Hafezi, S., 2008. Antioxidant activities of Iranian corn silk. Turkish Journal of Biology, 32: 43-49.
[10] Sing, R. and Kumari, N., 2015. Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. – Avaluable medicinal tree. Industrial Crops and Products, 73: 1–8.
[11] Mohamed, H., Ons, M., Yosra, E., Rayda, S., Neji, J. and Moncef, N., 2013. Chemical composition and antioxidant and radical-scavenging activities of Periploca laevigata root bark extracts. Journal of the Science of Food and Agriculture, 89(5): 897–905.
[12] Khanizadeh, Sh., Tsao, R., Rekika, D., Yang, R., Charles, M.T. and Rupasinghe, H.P.V., 2008. Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and analysis, 21: 396-401.
[13] Jamshidi, M., Ahmadi, H.R., Rezazadeh, S., Fathi, F. and Mazanderani, M., 2010. Study on phenolic and antioxidant activity of some selected plant of Mazandaran province. Medicinal Plant, 9(34): 177-183.
[14] Melikoglu, G., Bitis, L. and Mericli, A.H., 2004. Flavonoids of Crataegus microphylla. Natural Product Research, 18(3): 211–213.
[15] Zhang, L., Jianrong, L.I., Hogan, S., Chung, H., Gregory, E. and Zhou, W.K., 2010. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chemistry, 119:‌ 592–599.
[16] Montazeri, N., Baher, E., Mirzajani, F., Barami, Z. and Yousefian, S., 2011. Phytochemical contents and biological activities of Rosa canina fruit from Iran. Journal of Medicinal Plants Research, 5: 18. 4584-4589.
[17] Imanshahidi, M. and Hosseinzadeh, H., 2008. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytotherapy Research, 22: 999–1012.
[18] Zarei, A., Changizi-Ashtiyani, S., a Taheri, S. and Ramezani, M., 2015. A quick overview on some aspects of endocrinological and therapeutic effects of Berberis vulgaris L. Avicenna Journal of Phytomedicine, 5 (6): 485-497.
[19] Rounsaville, T.J. and Ranney, T.G., 2010. Ploidy levels and genome sizes of Berberis L. and Mahonia nutt. Species, hybrids, and cultivars. Horticultural Science, 45: 1029-1033.
[20] Kawai, M., Matsuura, T., Kyuno, S., Matsuki, H., Takenaka, M., Katsuoka, T., Butsugan, Y. Kazuki, Saito., 1987. A New physalin from Physalis alkekengi: structure of physalin L. Phytochemistry, 26(12), 3313-3317.
[21] Mazandaran, M. and Cheragoli, M., 2013. Total Alkaloid and Solanin Study in Different Sectors of Stem Cell (Solanum nigrum L) in Golestan Province (Northern Iran), The First Regional Conference of Medicinal Plants in the North of Iran, Gorgan, Agricultural Research Center and Resources Natural golestan, RCMPNI01_086.
[22] Veberic, R., Jakopic, J., Stampar, F. and Schmitzer, V., 2009. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols, Food Chemistry, 114 : 511–515.
[23] Vatai, T., Skerget, M. and Knez, Z., 2009. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. Journal of Food Engineering, 90(2): 246-254.
[24] Alirezalu, A., Salehi, P., Ahmadi, N., Sonboli, A., Aceto, S., Hatami Maleki, H. and Ayyari, M., 2018. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. International Journal of Food Properties, 21(1): 452-470.
[25] Chang, Q., Zuo, Z., Harrison, F. and Chow, M.S.S., 2002. Hawthorn, Int. Clinical Pharmacology & Therapeutics, 42: 605–612.
[26] Nakajima, J.i., Tanaka, I., Seo, S., Yamazaki, M. and Saito, K., 2004. LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. BioMed Research International, 5: 241-247.
[27] Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids pigments of photosynthetic membranes. Methods in Enzymology, 148: 350-382.
[28] Zugic, A., Ðordevic, S., Arsic, I., Markovic, G., Zivkovic, J., Jovanovic, S., and Tadic, V. 2014. Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia, Ind Crop Prod, 52: 519– 527.
[29] Chung, Y.C., Chen, S.J., Hsu, C.K., Chang, C.T. and Chou, S.T. 2005. Studies on theantioxidative activity of Graptopetalum paraguayense E. Walther. Food Chemistry, 91: 419–424.
[30] Giusti, M.M. and Wrolstad, R.E. 2001. Characterization & measurement of anthocyanins by UV‐visible spectroscopy. Current protocols in food analytical Chemistry, 47: 777-780.
[31] Karthikeyan, M., Radhika, K., Mathiyazhagan, S., Bhaskaran, R., Samiyappan, R. and Velazhahan, R. 2006. Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Brazilian Journal of Plant Physiology, 18: 367-377.
[32] Boudet, A. M. 2007. Evolution and current status of research in phenolic compounds. Phytochemistry, 68: 2722-2735.
[33] Olszewska, M. A., Nowak, S., Michel, P., Banaszcak, P., Kicel, A. 2010. Assessment of the content of phenolics and antioxidant action of inflorescences and leaves of selected species from the genus sorbus sensu stricto. Molecules, 15: 8769-8783.
[34] Moyer, R. A., Hummer, K. E., Finn. C. E. Frei, B., Wrolstad, R. E. 2002. Anthocyanins, phenolics, and antioxidant capacity in diver's small fruits: vaccinium, rubus, and ribes. Journal of Agricultural and Food and Chemistry, 50(3): 519-525.
[35] Prior, R. L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46(7): 2686-2693.
[36] Wu, R., Feri, B., Kennedy, A. J., Zhao, Y. 2010. Effect of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of ‘Marion’ and ‘Evergreen’ blackberries. LWTFood Science and Technology, 43(8): 1253-1264.
[37] Koca, I., Karadeniz, B. 2009. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea region of Turkey. Journal of Scientia Horticulture, 121(4): 447-450.
[38] Dai, J., Gupte, A., Gates, L., Mumper, R. J. 2009. A comprehensive study of anthocyanincontaining extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Journal of Food and Chemical Toxicology, 47(4): 837-847.
[39] Wang, W. D., Xu, Sh. Y. 2007. Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3): 271-275.
[40] Fattahi,M., Nazeri, V., Torras-Claveria, L., Sefidkon, F., Cusido, R.M., Zamani, Z., Palazon, J., 2013. Identification and quantification of leaf surface flavonoids in wild-growing populations of Dracocephalum kotschyi by LC–DAD–ESI-MS. Food Chemistry, 141:139–146.
[41] Martins, S., Mussatto, S.I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, CN., Teixeira, J.A., 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review Biotechnology Advances, 29:365–73.
[42] Tapas, A.R., Sakarkar, D.M. and Kakde, R.B., 2008. Flavonoids as nutraceuticals: A review. Tropical Journal of Pharmaceutical Research, 7(3): 1089–1099.
[43] Urbonaviciute A, Jakstas V, Kornysova O, Janulis V and Maruska A. 2006. Capillary electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna Jacq.) ethanolic extracts. Journal of Chromatography A: 1112, 339–344.
[44] Orhan DD, Hartevioglu A, Küpeli E, Yesilada E. 2007. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits, J. Ethnopharmacol, 112: 394-400.
[45] Zhang Z, Chang Q, Zhu M, Huangc Y, Hoa WKK. and Chena ZY. 2001. Characterization of antioxidants present in hawthorn fruit. The Journal of Nutritional Biochemistry 12: 144-152.
[46] Bernatoniene J, Masteikova R, Majiene D, Savickas A, Kevelaitis E, Bernatoniene R, Dvorackova K, Civinskiene G, Lekas R, Vitkevicius K and Peciura R. 2008. Free radical-scavenging activities of Crataegus monogyna extracts. Medicina 44(9), 706–712.
[47] Liu PZ, Kallio H, Lu DG, Zhou CS, Ou SY and Yang BR. 2010.Acids, Sugars, and Sugar Alcohols in Chinese Hawthorn (Crataegus spp.)Fruits. J. Agric. Food Chem 58: 1012–1019.
[48] Dixon RA, Paiva NL.1995.Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097.
[49] Alirezalu, A, Ahmadi, N, Salehi, P, Sonboli,A, Ayyari, M and Hatami Maleki, H. 2015. Antioxidant capacity in different organs of Hawthorn various species (Crataegus spp.), journal of food research, 25(2): 325-338.
[50] Piljac-Zegarac, J. and Samec, D., 2011. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Research International, 44:345–350.
[51] Tosun, I., Ustun, N.S. and Tekguler, B., 2008. Physical and chemical changes durin ripening of blackberry fruits. Science Agricultur, 65: 87-90.
[52] Garcia-Alonso, M., Rimbach, G., Rivas-Gonzalo, J.C. and Pascual-Teresa, S., 2004. Antioxidant and cellular activities of anthocyanins and their corresponding vitisins studies in platelets, monocytes, and human endothelial cells. Journal of Agricultural and Food Chemistry, 52: 3378–3384.
[53] Mullen, W., McGin, J., Lean, M.E.J., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T. and Crozier, A., 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50: 5191–5196.
[54] Pérez-Balibrea, S., Moreno, D.‌A. and García-Viguera, C. 2011. Improving the phytochemical composition of broccoli sprouts by elicitation. Food chemistry. 129: 35-44.
[55] Jahangir, M., Abdel-Farid, I.B., Kim, H.K., Choi, Y.H. and Verpoorte, R. 2009. Healthy and unhealthy plants the effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany, 67: 23–33.