خواص کاربردی و فعالیت آنتی‌اکسیدانی پروتئین هیدرولیزشده کوسه چانه سفید (Carcharhinus dussumieri)

نویسندگان
1 دانشجوی کارشناسی ارشد فرآوری محصولات شیلاتی دانشکده علوم دریایی دانشگاه تربیت مدرس، نور، مازندران، ایران
2 استادیار گروه علوم و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، مازندران، ایران
3 استاد گروه فرآوری محصولات شیلاتی دانشکده علوم دریایی دانشگاه تربیت مدرس، نور ، مازندران، ایران
چکیده
گوشت کوسه چانه سفید (Carcharhinus dussumieri) توسط محلول 1/0 مولار NaCl شستشو داده شد. سپس در دمای 50 درجه سانتی­گراد، به مدت 120 دقیقه توسط آنزیم آلکالاز هیدرولیز و به روش پاششی خشک گردید. خواص کاربردی پروتئین هیدرولیز شده، شامل حلالیت، دانسیته توده­ای، جذب روغن، جذب ایزوترم، ویسکوزیته سینماتیک و نیز فعالیت آنتی­اکسیدانی آن شامل قدرت حذف رادیکال آزادDPPH و میزان تأثیر پروتئین هیدرولیز شده بر پایداری اکسایشی روغن سویا بررسی شد. ویسکوزیته سینماتیک و قدرت حذف رادیکال آزاد DPPH به صورت تابعی از غلظت پروتئین هیدرولیز شده اندازه­گیری شد. نتایج نشان داد که میزان حلالیت پروتئین هیدرولیز شده­ی گوشت کوسه چانه سفید در pH های مختلف بیش از 6/83%، میزان دانسیته توده­ای 46/113 گرم بر لیتر و میزان جذب روغن، 15/131 میلی­گرم به ازای 50 میلی­گرم پودر پروتئین هیدرولیز شده بود. با افزایش غلظت محلول پروتئینی، ویسکوزیته سینماتیک افزایش یافت. (05/0P<). قدرت حذف رادیکال آزاد DPPH پروتئین­ هیدرولیز شده با غلظت 20 میلی­گرم بر میلی­لیتر، 47/96% و دوره القایی38/2ساعت بود که بطور معنی­داری (05/0P<) بیشتر از نمونه روغن بدون آنتی­اکسیدان بود. در نتیجه پروتئین هیدرولیز­شده کوسه چانه سفید دارای خواص کاربردی و آنتی­اکسیدانی مطلوب می­باشد و می­توان از آن به­عنوان آنتی اکسیدان طبیعی در صنایع غذایی یا دارویی استفاده نمود.
کلیدواژه‌ها

[1] Shahidi, F. & Onodenalore, A. (1995). Water dispersions of Myofibrillar Proteins from Capelin (Mallotus villosus). Food Chemistry, 53: 51-54.
[2] Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118: 403–410.
[3] Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102: 1317–1327.
[4] Amarowicz, R., & Shahidi, F. (1997). Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chemistry, 58: 355–359.
[5] Wergedahl, H., Liaset, B., Gudbrandsen, O. A., Lied, E., Espe, M., Muna, Z. (2004). Fish protein hydrolyzate reduces plasma total cholesterol, increases the proportion of HDL cholesterol and lowers acyl-CoA: cholesterol acyltransferase activity in liver of Zucker rats. Journal of Nutrition, 134: 1320–1327.
[6] Lin, CC. Liang, JH. (2002). Effect of antioxidants on the oxidative stability of chicken breast meat in a dispersion system Journal of Food Science, 67:530–3.
[7] Da´ valos, A., Miguel, M., Bartolome´, B., & Lopez-Fandin˜ o, R. (2004). Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection, 67: 1939–1944.
[8] Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T., Tatematsu, M. (1986). Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chemical Toxicolm, 24: 1071–82.
[9] Je, J.Y., Park, P. J., Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International. 38: 45–50.
[10] Wu, C. H., Chen, H. M., Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36: 949–957.
[11] Jun, S. Y., Park, P. J., Jung, W. K., Kim, S.K. (2004). Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology, 219:20–6.
[12] Raghavan, S., Kristinsson, HG., Leeuwenburgh, C. (2008). Radical scavenging and reducing ability of tilapia (Oreochromis niloticus)protein hydrolysates. Journal of Agricultural and Food Chemistry,56:10359–10367.
[13] Ovissipour, MR., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry. 115: 238–242.
[14] AOAC (2002). In: Hortwitz W (ed) Official Methods of Analysis of AOAC International, 17th ed. Gaithersburg: AOAC International.
[15] Fonkwe, L., Singh, R. (1996). Protein Recovery from Mechanically Deboned Turkey Residue by Enzymic Hydrolysis. Process Biochemistry, 31: 605-616.
[16] Lowry, O.H., Rosebroug, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
[17] Synowiecki, J., Al-Khateeb, N.A.A.Q. (2000). The Recovery of Protein Hydrolysate During Enzymatic Isolation of Chitin from Shrimp (Crangon crangon) Processing Discards. Food Chemistry, 68: 147-152.
[18] Kinsella, J.E. (1976). Functional properties of proteins in foods: a survey.  Critical Reviews in Food Science and Nutrition,8: 219–80.
[19] Regenstein, J.M., Regenstein, C., Kochen B. (1984). Food protein chemistry: An Introduction for Food Scientists. Academic Press, 353 p.
[20] Shahidi, F., Liyana-Pathirana, C.M., Wall, D.S. (2006). Antioxidant Activity of White and Black Sesame Seeds and Their Hull Fractions. Food Chemistry, 99: 478-483.
 
[21] Kim, H.J., Park, K., Shin, J., Lee, J., Heu, M., Lee, D. (2011). Fractionation and Characterization of Fractions with High Antioxidative Activity from the Gelatin Hydrolysates of Korean Rockfish Sebastes  schlegelii Skin. Fisheries and Aquatic Sciences, 14: 168-173.
[22] Slizyte,  R., Daukšas, E., Falch, E., Storrø, I., Rustad, T. (2005). Characteristics of Protein Fractions Generated from Hydrolysed Cod (Gadus morhua) By-products. Process Biochemistry, 40: 2021-2033.
[23] Kristinsson, H.G., Rasco, B.A. (2000). Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Critical Reviews in Food Science and Nutrition. 40: 43-81.
[24] Venugopal, V., Shahidi, F. (1994). Thermostable water dispersions of myofibrillar proteins from Atlantic mackerel (Scomber scombrus). Journal of Food Science, 59: 265-268.
[25] Vant Land, C.M. (2011). Drying in the process industry, John Wiley & Sons, Inc., Hoboken, New Jersey, 9-19.
[26]  Sathivel, S. P.J. Bechtel, J., Babbitt, S., Smiley, C., Crapo, K.D., Reppond, W. (2003). Biochemical and functional properties of herring (Clupea harengus) by-product hydrolysates . Journal of  Food Science,68: 2196–2200.
[27]  Desobry, S.A., Netto, F.M. & Labuza, T.P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for carotene encapsulation and preservation. Journal of  Food Science, 62: 1158-1162.
[28] Barbosa-Cánovas, G.V. & Juliano, P. (2005). Physical and chemical properties of food powders. In: C. Onwulata,ed. Encapsulated and Powdered Foods. Taylor and Francis, Boca Raton, USA, pp. 39–71.
[29] Foh, M.B.K., Amadou, I., Foh, B.M., Kamara, M.T. & Xia, W. (2010). Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International Journal of Molecular Sciences, 11: 1851-1869.
[30] Kristinsson, H.G., Rasco, B.A. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases, Journal of Agricultural and Food Chemistry, 48: 657–666.
[31] Haque, Z.U. (1993).  Influence of milk peptides in determining the functionality of milk proteins: A review, Journal of Dairy Science,76: 311–326.
[32] Wang, JC., Kinsella, J. E. (1976). Functional properties of novel proteins: alfalfa leaf protein. Journal of Food Science, 41:286–92.
[33] Mathlouthi, M. and Roge, B. (2003). Water vapour sorption isotherms and the caking of food powders. Food Chemistry, 82(1): 61-71.
[34] Yu, J., Ahmedna, M., Goktepe, I. (2007). Peanut protein concentrate: Production and functional properties as affected by processing. Food Chemistry, 103: 121-129.
[35] Diniz F., Martin A. (1997). Effects of the Extent of Enzymatic Hydrolysis on Functional Properties of Shark Protein Hydrolysate. Lebensmittel-Wissenschaft and Technology, 30: 266-272.
[36] Kamrul, H. Md,.  Roos, Y. H. (2006). Differences in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innovative Food Science and Emerging Technologies, 7:62–73.
[37] Cepeda, E., Villaran, M. C.,  Aranguiz, N. (1998). Functional properties of Faba Bean (Vicia faba) protein flour dried by spray drying and freeze drying. Journal of Food Engineering, 36: 303– 310.
[38] Je, J.Y., Qian, Z.J., Byun, H.G., Kim, S.K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42: 840-846.
[39] Brand-Williams, W., Cuvelier, M., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28: 25-30.
[40] Batista, I., Ramos, C., Coutinho, J., Bandarra, N., Nunes, M. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45: 18-24.
[41] Ovissipour, M., Rasco, B., Shiroodi, S.G., Gholami, S., Nemati, M. (2012). Antioxidative activity of protein hydrolysates from the whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, DOI 10.1002/jsfa.5957.