[1] Arguello-Hernández, P., Samaniego, I., Leguizamo, A., Bernalte-García, M. J., Ayuso-Yuste, M. C. 2024. Nutritional and functional properties of quinoa (Chenopodium quinoa Willd.) chimborazo ecotype: insights into chemical composition, Agriculture. 14, 396.
[2] Casalvara, R. F. A., Ferreira, B. M. R., Gonçalves, J. E., Yamaguchi, N. U., Bracht, A., Bracht, L., Comar, J. F., de Sá-Nakanishi, A. B., de Souza, C. G. M., Castoldi, R., Corrêa, R. C. G., Peralta, R. M. 2024. Biotechnological, nutritional, and therapeutic applications of quinoa (Chenopodium quinoa Willd.) and its by-products: a review of the past five-year findings, Nutrients. 16, 840.
[3] Lan, Y., Wang, X., Wang, L., Zhang, W., Song, Y., Zhao, S., Yang, X., Liu, X. 2024. Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination, Food Chemistry. 445, 138693.
[4] Kaur, S., Kaur, N. 2017. Development and sensory evaluation of gluten free bakery products using quinoa (Chenopodium Quinoa) flour, Journal of Applied and Natural Science. 9, 2449-2455.
[5] Chavan, S. M., Khadatkar, A., Hasan, M., Ahmad, D., Kumar, V., Jain, N. K. 2025. Quinoa (Chenopodium quinoa Willd.): Paving the way towards nutraceuticals and value-added products for sustainable development and nutritional security, Applied Food Research. 5, 100673.
[6] Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J., Vasiljevic, T. 2012. Germinated grains – Sources of bioactive compounds, Food Chemistry. 135, 950-959.
[7] Ti, H., Zhang, R., Zhang, M., Li, Q., Wei, Z., Zhang, Y., Tang, X., Deng, Y., Liu, L., Ma, Y. 2014. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages, Food Chemistry. 161, 337-344.
[8] Karimi, A. S., Saremnezhad, S. 2020. The effect of germination process on some functional properties of Iranian lentil cultivars, Journal of Food Science and Technology (Iran). 17, 167-176.
[9] Khodadadi, M., Masoumi, A. 2025. Recent drying technologies used for drying poultry litter (principles, advantages and disadvantages): A comprehensive review, Poultry Science. 104, 104677.
[10] Khodadadi, M., Masoumi, A., Sadeghi, M. 2024. Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters, Poultry Science. 103, 104277.
[11] Semwal, J., Meera, M. 2021. Infrared radiation: impact on physicochemical and functional characteristics of grain starch, Starch - Stärke. 73, 2000112.
[12] Jibril, A. N., Zuo, Y., Wang, S., Kibiya, A. Y., Attanda, M. L., Henry, I. I., Huang, J., Chen, K. 2024. Influence of drying chamber, energy consumption, and quality characterization of corn with graphene far infrared dryer, Drying Technology. 42, 1875-1890.
[13] Salehi, F., Goharpour, K., Razavi Kamran, H. 2023. Effects of ultrasound and microwave pretreatments of carrot slices before drying on the color indexes and drying rate, Ultrasonics Sonochemistry. 101, 106671.
[14] Amin Ekhlas, S., Pajohi-Alamoti, M. R., Salehi, F. 2023. Effect of ultrasonic waves and drying method on the moisture loss kinetics and rehydration of sprouted wheat, Journal of Food Science and Technology (Iran). 20, 159-168.
[15] Salehi, F., Satorabi, M. 2021. Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums, International Journal of Fruit Science. 21, 519-527.
[16] Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review, International Journal of Fruit Science. 20, 586-602.
[17] Amini, G., Salehi, F., Rasouli, M. 2020. Drying process modeling of basil seed mucilage by infrared dryer using artificial neural network, Journal of Food Science and Technology (Iran). 17, 23-31.
[18] Salehi, F., Razavi Kamran, H., Goharpour, K. 2024. Influence of ultrasonic pretreatment on the drying rate of lentil sprouts in hot-air and infrared dryers, Food Research Journal. 34, 31-43.
[19] Amini, G., Salehi, F., Rasouli, M. 2022. Color changes and drying kinetics modeling of basil seed mucilage during infrared drying process, Information Processing in Agriculture. 9, 397-405.
[20] Nosrati, M., Zare, D., Nasiri, M., Jafari, A., Eghtesad, M. 2018. Modeling and optimization of rough rice drying under hot air-infrared radiation in a laboratory scale vibratory bed dryer, Iranian Journal of Biosystems Engineering. 49, 423-435.