بررسی تاثیر پوشش خوراکی کیتوزان و شرایط فرایند بر زمان خشک شدن و کیفیت برش‌های ملون خشک شده با طرح تاگوچی

نویسندگان
1 1. گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه جیرفت
2 2. گروه علوم و مهندسی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
پوشش­های خوراکی لایه ای نازک و قابل خوردن از مواد طبیعی هستند که بر روی سطح میوه ها و سبزیجات قرار می گیرند. هدف از این پوشش ها افزایش ماندگاری و جلوگیری از کاهش کیفیت محصولات می باشد. در این پژوهش، آزمایش­های خشک کردن و ارزیابی کیفیت برش­های ملون تحت تاثیر پیش تیمار کیتوزان و شرایط فرایند، برای بدست آوردن ویژگی­های خشک کردن برش­های ملون انجام شد. برش­های ملون با ضخامت مختلف (5/0، 75/0، 1 و 25/1 سانتی متر) در محلول­های کیتوزان (با غلظت 5/0، 1، 5/1 و 2 درصد) غوطه ور و سپس توسط آون با هوای گرم در چهار سطح دما (65 ، 70، 75 و 80 درجه سانتی‌گراد) خشک شدند. تاثیر متغیرهای مستقل غلظت پوشش، دما و ضخامت برش بر متغیرهای پاسخ زمان خشک کردن، چروکیدگی، نسبت جذب مجدد آب و سفتی بافت با کمک روش تاگوچی بررسی گردید. نتایج نشان داد دمای فرایند و ضخامت برش به ترتیب بیشترین (87/61­%) و کمترین (72/%10) تاثیر را بر زمان خشک کردن داشتند. نسبت جذب مجدد آب و چروکیدگی برش­های خشک شده با افزایش غلظت پوشش و ضخامت برش­ها کاهش پیدا کردند؛ در حالی‌که مقدار این متغیرها با افزایش دما افزایش یافتند. غلظت پوشش و ضخامت برش­ها به ترتیب بیشترین و کمترین تاثیر را بر این دو فاکتور نشان دادند. افزایش غلظت پیش تیمار کیتوزان باعث افزایش سفتی بافت نمونه­ها شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of edible chitosan coating and process conditions on drying time and quality of dried melon slices using Taguchi design

نویسندگان English

fatemeh heidari 1
Fatemeh Amighi 1
Sedighe Tavasoli 2
Hossein Amirmohammadi 1
1 Food Science and Technology Department, Faculty of Agriculture, university of Jiroft, Jiroft, Iran
2 Faculty of food science and technology, University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده English

Edible coatings are biological materials that can be applied as a thin layer on fresh fruits and vegetables to enhance their quality during the drying process. In this research, we conducted drying tests and evaluated the quality of melon slices under the influence of chitosan pretreatment and process conditions to obtain the drying characteristics of melon slices. Melon slices of varying thicknesses (0.5, 0.75, 1, and 1.25 mm) were immersed in chitosan solutions (at concentrations of 0.5, 1, 1.5, and 2%) and then were dried in a hot air oven at four different temperature levels (65, 70, 75, and 80 ). Using the Taguchi design, we investigated how the independent variables (coating concentration, temperature, and slice thickness) affected the dependent variables, including drying time, shrinkage, water reabsorption ratio, and texture hardness. The drying results revealed that process temperature had the most significant effect on drying time (61.87%), while slice thickness had the least impact (10.72%). As coating concentration and slice thickness increased, the rehydration ratio and shrinkage of the dried slices decreased, but both increased with rising temperature. Coating concentration had the greatest influence on these two factors, while slice thickness had the smallest. Additionally, increasing the concentration of chitosan pretreatment led to a firmer texture in the samples.

کلیدواژه‌ها English

Melon
Drying
Coating
Chitosan
[1] Reis, F. R., Marques, C., de Moraes, A. C. S., & Masson, M. L. (2022). Trends in quality assessment and drying methods used for fruits and vegetables. Food Control, 142, 109254.
[2] Salehi, F. (2023). Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review. Food Bioscience, 51, 102307.
[3] Malakar, S. (2024). Active edible coating combined with novel pre-treatment technique for drying of foods: Mechanistic insights, enhancing drying performance and product quality. Food Bioscience, 104527.
[4] He, Z., Shen, Q., Wang, L., Fan, X., & Zhuang, Y. (2023). Effects of different drying methods on the physical characteristics and non-volatile taste components of Schizophyllum commune. Journal of Food Composition and Analysis, 123, 105632.
[5] Tepe, T. K. (2024). Effect of pretreatments on drying characteristics, rehydration properties, and total energy consumption of carrot slices: comparison between thin layer mathematical modelling and artificial neural network modelling. Biomass Conversion and Biorefinery, 14(1), 1373-1387.
[6] Alam, M., Hossain, M. A., & Sarkar, A. (2020). Effect of edible coating on functional properties and nutritional compounds retention of airdried green banana (Musa sapientum L.). IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 14(2), 51-58.
[7] Tokatlı, K., & Demirdöven, A. (2020). Effects of chitosan edible film coatings on the physicochemical and microbiological qualities of sweet cherry (Prunus avium L.). Scientia Horticulturae, 259, 108656.
[9] Zhou, Q., Huang, S., Zou, L., Ren, D., Wu, X., & Xu, D. (2024). Application of hydroxypropyl methylcellulose to improve the wettability of chitosan coating and its preservation performance on tangerine fruits. International Journal of Biological Macromolecules, 263, 130539
[10] Kusuma, H. S., Jaya, D. E. C., & Illiyanasafa, N. (2024). Effect of chitosan coating on basil (Ocimum sanctum) leaves dried by microwave-assisted drying method: Analysis of color, effective moisture diffusivity, and drying kinetics. International Journal of Biological Macromolecules, 133000.
[11] Ubeyitogullari, A., & Cekmecelioglu, D. (2016). Optimization of hemicellulose coating as applied to apricot drying and comparison with chitosan coating and sulfite treatment. Journal of Food Process Engineering, 39(6), 542-552.
[12] Liu, W., Zhang, M., Mujumdar, A. S., Chitrakar, B., & Yu, D. (2021). Effects of chitosan coating on freeze-drying of blueberry enhanced by ultrasound pre-treatment in sodium bicarbonate medium. International Journal of Biological Macromolecules, 181, 631-643.
[13] da Cunha, R. M. C., Brandão, S. C. R., de Medeiros, R. A. B., da Silva Júnior, E. V., da Silva, J. H. F., & Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333, 127502.
[14] Carvalho, R. L., Cabral, M. F., Germano, T. A., de Carvalho, W. M., Brasil, I. M., Gallão, M. I., ... & de Miranda, M. R. A. (2016). Chitosan coating with trans-cinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biology and Technology, 113, 29-39.
[15] Yousuf, B., Srivastava, A. K., & Ahmad, S. (2020). Application of natural fruit extract and hydrocolloid-based coating to retain quality of fresh-cut melon. Journal of Food Science and Technology, 57, 3647-3658.
[16] Song, H., Jang, A. R., Lee, S., & Lee, S. Y. (2024). Application of sodium alginate-based edible coating with citric acid to improve the safety and quality of fresh-cut melon (Cucumis melo L.) during cold storage. Food Science and Biotechnology, 33(7), 1741-1750.
[17] Aktaş, M., Şevik, S., Amini, A., & Khanlari, A. (2016). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137, 500-515.
[18] Chang, A., Zheng, X., Xiao, H., Yao, X., Liu, D., Li, X., & Li, Y. (2022). Short-and medium-wave infrared drying of cantaloupe (Cucumis melon L.) slices: Drying kinetics and process parameter optimization. Processes, 10(1), 114.
[19] da Cunha, R. M. C., Brandão, S. C. R., de Medeiros, R. A. B., da Silva Júnior, E. V., da Silva, J. H. F., & Azoubel, P. M. (2020). Effect of ethanol pretreatment on melon convective drying. Food Chemistry, 333, 127502.
[20] Vega-Gálvez, A., Zura-Bravo, L., Lemus-Mondaca, R., Martinez-Monzó, J., Quispe-Fuentes, I., Puente, L., & Di Scala, K. (2015). Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.). Journal of Food Science and Technology, 52, 2304-2311.
[21] Assadpour, E., & Jafari, S. M. (2017). Spray drying of folic acid within nano-emulsions: optimization by Taguchi approach. Drying Technology, 35(9), 1152-1160.
[22] Heidari, F., Jafari, S. M., Ziaiifar, A. M., & Anton, N. (2022). Preparation of pickering emulsions stabilized by modified silica nanoparticles via the Taguchi approach. Pharmaceutics, 14(8), 1561.
[23] Satorabi, M., Salehi, F., & Rasouli, M. (2021). Investigation of the effects of coating with xanthan and Balangu seed gums on the drying time of apricot slices in infrared system. Journal of food science and technology (Iran), 18(111), 295-303.
[24] Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53, 25-35.
[25] Islam, M. Z., Saha, T., Monalisa, K., & Hoque, M. M. (2019). Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. Journal of Food Measurement and Characterization, 13, 2951-2960.
[26] Garcia, C. C., Caetano, L. C., de Souza Silva, K., & Mauro, M. A. (2014). Influence of edible coating on the drying and quality of papaya (Carica papaya). Food and bioprocess technology, 7, 2828-2839.
[27] Sabbaghi, H., Ziaiifar, A. M., & Kashaninejad, M. (2020). Textural profile analysis (TPA) of dried apple slices using infrared radiation with intermittent heating method.
[28] Salehi, F., Kashaninejad, M., & Jafarianlari, A. (2017). Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat and Mass Transfer, 53, 1751-1759.
[29] Kaymak-Ertekin, F., & Gedik, A. (2005). Kinetic modelling of quality deterioration in onions during drying and storage. Journal of Food Engineering, 68(4), 443-453.
[30] Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53, 25-35.
[31] Naghipour Zade Mahani, M., & Aghkhani, M. H. (2016). The effect of slicing type on drying kinetics and quality of dried carrot. Journal of Agricultural Machinery, 6(1), 224-235.
[32] An, N. N., Shang, N., Lv, W. Q., Li, D., Wang, L. J., & Wang, Y. (2022). Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). International Journal of Biological Macromolecules, 202, 354-365.
[33] Akbarian, M., Moayedi, F., Ghasemkhani, N., & Ghaseminezhad, A. (2014). Impact of antioxidant edible coatings and osmotic dehydration on shrinkage and colour of" Quince" dried by hot air. International Journal of Biosciences, 4(1), 27-33.
[34] Udomkun, P., Mahayothee, B., Nagle, M., & Müller, J. (2014). Effects of calcium chloride and calcium lactate applications with osmotic pretreatment on physicochemical aspects and consumer acceptances of dried papaya. International Journal of Food Science & Technology, 49(4), 1122-1131
[35] Mina, Z. P., Kaseke, T., Fadiji, T., & Fawole, O. A. (2022). Effect of gum Arabic and ethanol pretreatments on drying kinetics and quality attributes of dried carrot slices. Heliyon, 8(12).
[36] Li, L., Sun, J., Gao, H., Shen, Y., Li, C., Yi, P., ... & Tang, Y. (2017). Effects of Polysaccharide‐Based Edible Coatings on Quality and Antioxidant Enzyme System of Strawberry during Cold Storage. International Journal of Polymer Science, 2017(1), 9746174.
[37] Kusuma, H. S., Jaya, D. E. C., & Illiyanasafa, N. (2024). Effect of chitosan coating on basil (Ocimum sanctum) leaves dried by microwave-assisted drying method: Analysis of color, effective moisture diffusivity, and drying kinetics. International Journal of Biological Macromolecules, 133000.