بهینه سازی تولید پروتئین هیدرولیز شده کنجاله بادام شیرین به وسیله پیش تیمار فراصوت و آنزیم‌ آلکالاز

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 دانشگاه علوم پزشکی گلستان
چکیده
بادام شیرین یک منبع خوبی از پروتئین های با کیفیت بالا می باشد و مقدار پروتئین در بادام بر اساس وزن خشک 22-16% گزارش شده است (سات، 1993). پروتئین های بادام قابلیت هضم بالایی دارند و آلبومین و گلوبولین 99-88% از پروتئین های اصلی آن را تشکیل می دهند (سانگ و همکاران، 2002). در این پژوهش بهینه سازی فرآیند هیدرولیز آنزیمی پروتئین بادام شیرین با استفاده از آنزیم‌ آلکالاز و پیش تیمار فراصوت انجام گرفت. متغیرهای مورد بررسی زمان هیدرولیز، غلظت آنزیم و زمان اعمال امواج فراصوت و پاسخ های مورد بررسی درجه هیدرولیز، ظرفیت آنتی اکسیدانی کل و فعالیت شلاته کنندگی یون آهن بود. سپس تاثیر غلظت آنزیم بر فعالیت احیاء کنندگی یون آهن و ظرفیت آنتی اکسیدانی کل تیمار بهینه ارزیابی شد. در ادامه، مقایسه خصوصیات عملکردی (حلالیت، خاصیت کف کنندگی و خاصیت امولسیون کنندگی) تیمار بهینه هیدرولیز شده با پروتئین هیدرولیز نشده در pH های مختلف انجام گرفت. نتایج نشان داد بیشترین میزان فعالیت آنتی اکسیدانی (فعالیت مهار رادیکال DPPH (97/62 درصد)، شلاته کنندگی یون آهن (85/72 درصد) و درجه هیدرولیز مناسب (38/31 درصد) با کاربرد آنزیم آلکالاز در شرایط زمان اعمال امواج فراصوت(400 وات) 59/3 دقیقه، زمان هیدرولیز 50/171 دقیقه و غلظت آنزیم 95/1 درصد حاصل شد. فعالیت آنتی اکسیدانی پروتئین هیدرولیز شده به غلظت وابسته بود و هیدرولیز به‌میزان قابل توجهی سبب افزایش خصوصیات عملکردی پروتئین بادام شیرین شد. با توجه به نتایج به دست آمده در این پژوهش، محصول پروتئین هیدرولیز شده بقابلیت استفاده در صنایع غذایی به عنوان یک نگهدارنده طبیعی و ترکیب مغذی و در فراورده های دارویی جهت افزایش خواص عملکردی و بهبود خصوصیات تغذیه ای را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing production of hydrolyzed protein of sweet almond meal by ultrasound pretreatment and alcalase enzyme

نویسندگان English

sanaz moayer 1
mohammad ghorbani 1
alireza sadeghi mahoonak 1
mehdi kashani nejad 1
mojtaba raeisi 2
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Golestan University of Medical Sciences
چکیده English

Sweet almonds are a good source of high quality proteins and the amount of protein in almonds is reported to be 16-22% based on dry weight (Sat, 1993). Almond proteins have high digestibility and albumin and globulin constitute 88-99% of its main proteins (Song et al., 2002). In this research, optimization of sweet almond protein enzymatic hydrolysis process was done using alcalase enzyme and ultrasound pretreatment. The investigated variables were hydrolysis time, enzyme concentration and ultrasound application time, and the investigated responses were hydrolysis degree, total antioxidant capacity and iron ion chelating activity. Then the effect of enzyme concentration on iron ion reduction activity and antioxidant capacity of the whole optimal treatment was evaluated. Next, a comparison of functional properties (solubility, foaming properties and emulsifying properties) of optimal hydrolyzed treatment with non-hydrolyzed protein was done at different pH. The results showed the highest amount of antioxidant activity (DPPH radical inhibition activity (62.97%), iron ion chelation (72.85%) and appropriate hydrolysis degree (31.38%) with the use of alcalase enzyme under conditions of application of ultrasound waves. (400 W) 3.59 minutes, the hydrolysis time was 171.50 minutes and the enzyme concentration was 1.95%.The antioxidant activity of the hydrolyzed protein was dependent on the concentration and the hydrolysis significantly increased the functional properties of the sweet almond protein. According to the results obtained in this research, the hydrolyzed protein product can be used in the food industry as a natural preservative and nutrient composition and in pharmaceutical products to increase functional properties and improve nutritional properties

کلیدواژه‌ها English

Antioxidant
ultrasound waves
sweet almond
Hydrolyzed protein
enzymatic hydrolysis
alkalase
1- Steinbrenner, H., Speckmann, B. and Klotz, L.O., (2016). Selenoproteins: Antioxidant selenoenzymes and beyond. Archives of Biochemistry and Biophysics, 595, pp.113-119.
2- Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R. and Lewandowski, W., (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), p.1984.
3- Sánchez, A. and Vázquez, A., 2017. Bioactive peptides: A review. Food quality and safety, 1(1), pp.29-46.
4- Chen, C., Chi, Y.J., Zhao, M.Y. and Xu, W. (2012). Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Science and Biotechnology, 21: 27-34.
5- Gauthier, SF., Pouliot, Y., and Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. International Dairy Journal, 16(11):1315–23.
6- Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E. and Zieliński, D., (2020). Current trends of bioactive peptides—New sources and therapeutic effect. Foods, 9(7), p.846.
7- Wang, C., Tian, L.L., Li, S., Li, H.B., Zhou, Y., Wang, H., Yang, Q.Z., Ma, L.J. and Shang, D.J., 2013. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PloS one, 8(4), p.e60462.
8- Ganguly, A., Sharma, K. and Majumder, K., (2019). Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. Advances in food and nutrition research, 89, pp.165-207.
9- Langyan, S., Khan, F. N., Yadava, P., Alhazmi, A., Mahmoud, S. F., Saleh, D. I., Zuan, A. T. K. (2021). In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi journal of biological sciences, 28(10), 5480-5489.‌
10- Idowu, A.T., Benjakul, S., Sinthusamran, S., Sookchoo, P. and Kishimura, H., (2019). Protein hydrolysate from salmon frames: Production, characteristics and antioxidative activity. Journal of Food Biochemistry, 43(2), p.e12734.
11- Farzanfar, F., Sadeghi Mahoonak, A., Ghorbani, M., Hosseini Qaboos, S.H., Kaveh, S. (2024). The effect of ultrasound pretreatment on the antioxidant properties of hydrolyzed protein from flaxseed meal using alcalase and pancreatin enzymes by response surface methodology. Journal of Food Science and Technology (Iran), 21(147), 187–205.
12- Li, X., Da, S., Li, C., Xue, F. and Zang, T., (2018). Effects of high‐intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chemistry, 95(4), pp.518-526.
13- Rutherfurd-Markwick, K.J., (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108(S2), pp.S149-S157.
14- Udenigwe, C.C., Je, J.Y., Cho, Y.S. and Yada, R.Y., (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food & function, 4(5), pp.777-783.
15- Kaveh, S., Mahoonak, A. S., Ghorbani, M., & Jafari, S. M. (2022). Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, 114908.
16- Sadeghi Mahoonak, A.R., & Kaveh, S. (2022). Assessment of ACE-inhibitory and antioxidant activities of the peptide fragments from pumpkin seeds. Iranian-Journal Nutrition Science Food Technology, 17(3), 45–56.
17- Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–54.
18- Kaveh, S., Sadeghi, M.A., Ghorbani, M.,Jafari, M., Sarabandi, K. (2019).Optimization of production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of Food Science and
Technology, 15 (84), pp. 75-88.
19- Kaveh, S., Sadeghi Mahoonak, A., Erfanimoghaddam, V., Ghorbani, M., Gholamhossein pour, A.A., & Raeisi, M. (2024). Optimization of the effect of hydrolysis conditions and type of protease on the degree of hydrolysis and antioxidant properties of the protein hydrolysate from the skipjack fish (Katsuwonus pelamis) viscera by the response surface methodology. Journal of Food Science and Technology (Iran), 20(144), 131–152.
20- Alvand, M., Sadeghi Mahoonak, A., Ghorbani, M., Shahiri Tabarestani, H. and Kaveh, S., (2022). Comparison of the Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein by Pancreatin and Alcalase. Food Engineering Research, 21(2), pp.75-90.
21- Kaveh, S., Sadeghi Mahoonak, A., Erfani Moghadam, V., Ghorbani, M., Gholamhosseinpour, A., Raeisi, M. (2023). Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes. Journal of Food Science andTechnology, 20 (141):200-222
22- Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A., (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), pp.178-184.
23- Sarabandi K, Sadeghi Mahoonak A, Hamishekar H, Ghorbani M, Jafari M. (2019). Functional and Antioxidant Properties of Casein Hydrolysate Prepared with Pancreatin. Iranian Journal of nutrition science and food technology, 13 (4) :61-74.
24- Kaveh, S., Sadeghi, M. A., Ghorbani, M., Jafari, M., & Sarabandi, K. (2019). Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology.
25- Jin, J., Ma, H., Wang, K., Yagoub, A. E. G. A., Owusu, J., Qu, WYe, X. (2015). Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics sonochemistry, 24, 55-64.
26- Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24.
27- Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2019). Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food chemistry, 299, 125165.
28- Torres-Fuentes, C., Alaiz, M., & Vioque, J. (2012). Iron-chelating activity of chickpea protein hydrolysate peptides. Food chemistry, 134(3), 1585-1588.
29- Arabshahi-Delouee, S. and Urooj, A., 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), pp.1233-1240.
30- Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Sarabandi K. (2020). Comparison of antioxidant properties of fenugreek seed protein hydrolyzed with alcalase and pancreatin. Journal of Innovation in Food Science and Technology, 11(4),77-88.
31- Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), pp.1198-1205.
32- Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry, 111(2), pp.370-376.
33- Zhao, Q., Xiong, H., Selomulya, C., Chen, X.D., Zhong, H., Wang, S., Sun, W. and Zhou, Q., 2012. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food chemistry, 134(3), pp.1360-1367.
34- Cui, Q., Sun, Y., Zhou, Z., Cheng, J., & Guo, M. (2021). Effects of enzymatic hydrolysis on physicochemical properties and solubility and bitterness of milk protein hydrolysates. Foods, 10(10), 2462.
35- Muhamyankaka, V., Shoemaker, C. F., Nalwoga, M., & Zhang, X. M. (2013). Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal, 20(5), 2227.
36- Samaei, S. P., Ghorbani, M., Sadeghi Mahoonak, A., & Alami, M. (2021). Investigation of functional and antioxidant properties of faba bean protein hydrolysates using combines hydrolysis. Food Processing and Preservation Journal, 12(2), 25-38
37- Mohanty, U., Majumdar, R. K., Mohanty, B., Mehta, N. K., & Parhi, J. (2021). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58, 4349-4358.
38- Shariat, A. M., Sadeghi, M. A., Ghorbani, M., & Alami, M. (2020). Evaluation of Functional Properties of bioactive protein hydrolysate derived from tomato seed. Journal of food science and technology, 16(96), 185-197.
39- Betancur‐Ancona, D., Sosa‐Espinoza, T., Ruiz‐Ruiz, J., Segura‐Campos, M. and Chel‐Guerrero, L., 2014. Enzymatic hydrolysis of hard‐to‐cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. International journal of food science & technology, 49(1), pp.2-8.
40- Popović, L., Peričin, D., Vaštag, Ž., Popović, S., Krimer, V., & Torbica, A. (2013). Antioxidative and functional properties of pumpkin oil cake globulin hydrolysates. Journal of the American oil chemists' society, 90, 1157-1165.