1- Steinbrenner, H., Speckmann, B. and Klotz, L.O., (2016). Selenoproteins: Antioxidant selenoenzymes and beyond. Archives of Biochemistry and Biophysics, 595, pp.113-119.
2- Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R. and Lewandowski, W., (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), p.1984.
3- Sánchez, A. and Vázquez, A., 2017. Bioactive peptides: A review. Food quality and safety, 1(1), pp.29-46.
4- Chen, C., Chi, Y.J., Zhao, M.Y. and Xu, W. (2012). Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Science and Biotechnology, 21: 27-34.
5- Gauthier, SF., Pouliot, Y., and Saint-Sauveur, D. (2006). Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. International Dairy Journal, 16(11):1315–23.
6- Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E. and Zieliński, D., (2020). Current trends of bioactive peptides—New sources and therapeutic effect. Foods, 9(7), p.846.
7- Wang, C., Tian, L.L., Li, S., Li, H.B., Zhou, Y., Wang, H., Yang, Q.Z., Ma, L.J. and Shang, D.J., 2013. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PloS one, 8(4), p.e60462.
8- Ganguly, A., Sharma, K. and Majumder, K., (2019). Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. Advances in food and nutrition research, 89, pp.165-207.
9- Langyan, S., Khan, F. N., Yadava, P., Alhazmi, A., Mahmoud, S. F., Saleh, D. I., Zuan, A. T. K. (2021). In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi journal of biological sciences, 28(10), 5480-5489.
10- Idowu, A.T., Benjakul, S., Sinthusamran, S., Sookchoo, P. and Kishimura, H., (2019). Protein hydrolysate from salmon frames: Production, characteristics and antioxidative activity. Journal of Food Biochemistry, 43(2), p.e12734.
11- Farzanfar, F., Sadeghi Mahoonak, A., Ghorbani, M., Hosseini Qaboos, S.H., Kaveh, S. (2024). The effect of ultrasound pretreatment on the antioxidant properties of hydrolyzed protein from flaxseed meal using alcalase and pancreatin enzymes by response surface methodology. Journal of Food Science and Technology (Iran), 21(147), 187–205.
12- Li, X., Da, S., Li, C., Xue, F. and Zang, T., (2018). Effects of high‐intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chemistry, 95(4), pp.518-526.
13- Rutherfurd-Markwick, K.J., (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108(S2), pp.S149-S157.
14- Udenigwe, C.C., Je, J.Y., Cho, Y.S. and Yada, R.Y., (2013). Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food & function, 4(5), pp.777-783.
15- Kaveh, S., Mahoonak, A. S., Ghorbani, M., & Jafari, S. M. (2022). Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, 114908.
16- Sadeghi Mahoonak, A.R., & Kaveh, S. (2022). Assessment of ACE-inhibitory and antioxidant activities of the peptide fragments from pumpkin seeds. Iranian-Journal Nutrition Science Food Technology, 17(3), 45–56.
17- Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–54.
18- Kaveh, S., Sadeghi, M.A., Ghorbani, M.,Jafari, M., Sarabandi, K. (2019).Optimization of production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of Food Science and
Technology, 15 (84), pp. 75-88.
19- Kaveh, S., Sadeghi Mahoonak, A., Erfanimoghaddam, V., Ghorbani, M., Gholamhossein pour, A.A., & Raeisi, M. (2024). Optimization of the effect of hydrolysis conditions and type of protease on the degree of hydrolysis and antioxidant properties of the protein hydrolysate from the skipjack fish (Katsuwonus pelamis) viscera by the response surface methodology. Journal of Food Science and Technology (Iran), 20(144), 131–152.
20- Alvand, M., Sadeghi Mahoonak, A., Ghorbani, M., Shahiri Tabarestani, H. and Kaveh, S., (2022). Comparison of the Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein by Pancreatin and Alcalase. Food Engineering Research, 21(2), pp.75-90.
21- Kaveh, S., Sadeghi Mahoonak, A., Erfani Moghadam, V., Ghorbani, M., Gholamhosseinpour, A., Raeisi, M. (2023). Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes. Journal of Food Science andTechnology, 20 (141):200-222
22- Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A., (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), pp.178-184.
23- Sarabandi K, Sadeghi Mahoonak A, Hamishekar H, Ghorbani M, Jafari M. (2019). Functional and Antioxidant Properties of Casein Hydrolysate Prepared with Pancreatin. Iranian Journal of nutrition science and food technology, 13 (4) :61-74.
24- Kaveh, S., Sadeghi, M. A., Ghorbani, M., Jafari, M., & Sarabandi, K. (2019). Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology.
25- Jin, J., Ma, H., Wang, K., Yagoub, A. E. G. A., Owusu, J., Qu, WYe, X. (2015). Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal. Ultrasonics sonochemistry, 24, 55-64.
26- Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24.
27- Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2019). Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food chemistry, 299, 125165.
28- Torres-Fuentes, C., Alaiz, M., & Vioque, J. (2012). Iron-chelating activity of chickpea protein hydrolysate peptides. Food chemistry, 134(3), 1585-1588.
29- Arabshahi-Delouee, S. and Urooj, A., 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), pp.1233-1240.
30- Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Sarabandi K. (2020). Comparison of antioxidant properties of fenugreek seed protein hydrolyzed with alcalase and pancreatin. Journal of Innovation in Food Science and Technology, 11(4),77-88.
31- Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), pp.1198-1205.
32- Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry, 111(2), pp.370-376.
33- Zhao, Q., Xiong, H., Selomulya, C., Chen, X.D., Zhong, H., Wang, S., Sun, W. and Zhou, Q., 2012. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food chemistry, 134(3), pp.1360-1367.
34- Cui, Q., Sun, Y., Zhou, Z., Cheng, J., & Guo, M. (2021). Effects of enzymatic hydrolysis on physicochemical properties and solubility and bitterness of milk protein hydrolysates. Foods, 10(10), 2462.
35- Muhamyankaka, V., Shoemaker, C. F., Nalwoga, M., & Zhang, X. M. (2013). Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal, 20(5), 2227.
36- Samaei, S. P., Ghorbani, M., Sadeghi Mahoonak, A., & Alami, M. (2021). Investigation of functional and antioxidant properties of faba bean protein hydrolysates using combines hydrolysis. Food Processing and Preservation Journal, 12(2), 25-38
37- Mohanty, U., Majumdar, R. K., Mohanty, B., Mehta, N. K., & Parhi, J. (2021). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58, 4349-4358.
38- Shariat, A. M., Sadeghi, M. A., Ghorbani, M., & Alami, M. (2020). Evaluation of Functional Properties of bioactive protein hydrolysate derived from tomato seed. Journal of food science and technology, 16(96), 185-197.
39- Betancur‐Ancona, D., Sosa‐Espinoza, T., Ruiz‐Ruiz, J., Segura‐Campos, M. and Chel‐Guerrero, L., 2014. Enzymatic hydrolysis of hard‐to‐cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. International journal of food science & technology, 49(1), pp.2-8.
40- Popović, L., Peričin, D., Vaštag, Ž., Popović, S., Krimer, V., & Torbica, A. (2013). Antioxidative and functional properties of pumpkin oil cake globulin hydrolysates. Journal of the American oil chemists' society, 90, 1157-1165.