1 Panchal, B., & Bhandari, B. (2020). Butter and Dairy Fat Spreads. Dairy Fat Products and Functionality, 509–532. https://doi.org/10.1007/978-3-030-41661-4_21
2 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food research international (Ottawa, Ont.), 147, 110486. https://doi.org/10.1016/j.foodres.2021.110486
3 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Oleogel-based emulsions: Concepts, structuring agents, and applications in food. Journal of food science, 86(7), 2785–2801. https://doi.org/10.1111/1750-3841.15788
4 Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: an opportunity for fat replacement in foods. Food & Function, 9(2), 758–773. https://doi.org/10.1039/c7fo01641g
5 Yang, X., Gong, T., Li, D., Li, A., Sun, L., & Guo, Y. (2019). Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydrate Polymers, 226, 115278. https://doi.org/10.1016/j.carbpol.2019.115278
6 Kangchai, W., Sangsirimongkolying, R., & Methacanon, P. (2018). Feasibility study of margarine substitute based on gelatin-oil emulsion gel. Chiang Mai Journal of Science, 45(1), 505-514.
7 García-Ortega, M. L., Toro-Vazquez, J. F., & Ghosh, S. (2021). Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Research International, 150, 110763. https://doi.org/10.1016/j.foodres.2021.110763
8 Lumor, S. E., Jones, K. C., Ashby, R., Strahan, G. D., Kim, B. H., Lee, G.-C., Shaw, J.-F., Kays, S. E., Chang, S.-W., Foglia, T. A., & Akoh, C. C. (2007). Synthesis and Characterization of Canola Oil−Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application. Journal of Agricultural and Food Chemistry, 55(26), 10692–10702. https://doi.org/10.1021/jf0710175
9 Martini, S., Tan, C. Y., & Jana, S. (2015). Physical Characterization of Wax/Oil Crystalline Networks. Journal of Food Science, 80(5). Portico. https://doi.org/10.1111/1750-3841.12853
10 AOCS 1996. Official Methods and Recommended Practices of the American Oil Chemists, Society, Champaign, AOCS Press.
11 Yılmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5(62), 50259–50267. https://doi.org/10.1039/c5ra06689a
12 Soddu, E., Rassu, G., Cossu, M., Giunchedi, P., Cerri, G., & Gavini, E. (2014). The effect of formulative parameters on the size and physical stability of SLN based on “green” components. Pharmaceutical Development and Technology, 21(1), 98–107. https://doi.org/10.3109/10837450.2014.971376
13 Dibildox-Alvarado, E., Rodrigues, J. N., Gioielli, L. A., Toro-Vazquez, J. F., & Marangoni, A. G. (2004). Effects of Crystalline Microstructure on Oil Migration in a Semisolid Fat Matrix. Crystal Growth & Design, 4(4), 731–736. https://doi.org/10.1021/cg049933n
14 Wang, P., Cui, N., Luo, J., Zhang, H., Guo, H., Wen, P., & Ren, F. (2016). Stable water-in-oil emulsions formulated with polyglycerol polyricinoleate and glucono-δ-lactone-induced casein gels. Food Hydrocolloids, 57, 217–220. https://doi.org/10.1016/j.foodhyd.2016.01.013
15 Silva, T. J., Fernandes, G. D., Bernardinelli, O. D., Silva, E. C. da R., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Research International, 140, 110036. https://doi.org/10.1016/j.foodres.2020.110036
16 Hwang, H., & Winkler‐Moser, J. K. (2020). Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. Journal of Food Science, 85(10), 3293–3302. Portico. https://doi.org/10.1111/1750-3841.15444
17 Pang, M., Shi, Z., Lei, Z., Ge, Y., Jiang, S., & Cao, L. (2020). Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas y Aceites, 71(4), 380. https://doi.org/10.3989/gya.0806192
18 Qiu, H., Qu, K., Zhang, H., & Eun, J.-B. (2023). Characterization and comparison of physical properties and in vitro simulated digestion of multi-component oleogels with different molecular weights prepared by the direct method. Food Hydrocolloids, 142, 108850. https://doi.org/10.1016/j.foodhyd.2023.108850
19 Luo, S.-Z., Hu, X.-F., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., Cao, L.-L., Pang, M., Hou, Z.-G., & Jiang, S.-T. (2019). Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry, 276, 209–217. https://doi.org/10.1016/j.foodchem.2018.09.161
20 Cheong, L., Tan, C., Long, K., Suria Affandi Yusoff, Mohd., & Lai, O. (2009). Physicochemical, Textural and Viscoelastic Properties of Palm Diacylglycerol Bakery Margarine During Storage. Journal of the American Oil Chemists’ Society, 86(8), 723–731. Portico. https://doi.org/10.1007/s11746-009-1413-4
21 Naeli, M. H., Milani, J. M., Farmani, J., & Zargaraan, A. (2022). Developing and optimizing low-saturated oleogel shortening based on ethyl cellulose and hydroxypropyl methyl cellulose biopolymers. Food Chemistry, 369, 130963. https://doi.org/10.1016/j.foodchem.2021.130963
22 da Silva, S. L., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., de Lima Franzen, F., Schneider, G., Lorenzo, J. M., Fries, L. L. M., Cichoski, A. J., & Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat science, 149, 141–148. https://doi.org/10.1016/j.meatsci.2018.11.020
23 Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701
24 Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458–1467. Portico. https://doi.org/10.1111/ijfs.14469
25 Chai, X., Zhang, Y., Shi, Y., & Liu, Y. (2022). Crystallization and Structural Properties of Oleogel-Based Margarine. Molecules, 27(24), 8952. https://doi.org/10.3390/molecules27248952
26 Bobe, G., Hammond, E. G., Freeman, A. E., Lindberg, G. L., & Beitz, D. C. (2003). Texture of Butter from Cows with Different Milk Fatty Acid Compositions. Journal of Dairy Science, 86(10), 3122–3127. https://doi.org/10.3168/jds.s0022-0302(03)73913-7
27 Borriello, A., Masi, P., & Cavella, S. (2021). Novel pumpkin seed oil-based oleogels: development and physical characterization. LWT, 152, 112165. https://doi.org/10.1016/j.lwt.2021.112165
28 Tinello, F., Lante, A., Bernardi, M., Cappiello, F., Galgano, F., Caruso, M. C., & Favati, F. (2017). Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils. European Food Research and Technology, 244(4), 747–755. https://doi.org/10.1007/s00217-017-2995-y
29 Kupiec, M., Zbikowska, A., Marciniak-Lukasiak, K., & Kowalska, M. (2020). Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture, 10(6), 211. https://doi.org/10.3390/agriculture10060211
30 Naderi, M., Farmani, J., & Rashidi, L. (2018). The impact of saturated monoacylglycerols on the oxidative stability of Canola oil under various time/temperature conditions. Grasas y Aceites, 69(3), 267. https://doi.org/10.3989/gya.0346181
31 Hakimzadeh, V., Mahjoob, R., & Farmani, J. (2020). Production and evaluation of physicochemical and rheological properties of sorbitan mono-stearate and sorbitan tri-stearate based Oleogels as low SFA shortening. Authorea Preprints.
32 Nourbehesht, N., Shekarchizadeh, H., & Soltanizadeh, N. (2018). Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics sonochemistry, 42, 585–593. https://doi.org/10.1016/j.ultsonch.2017.12.029
33 Kim, M., Hwang, H.-S., Jeong, S., & Lee, S. (2022). Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT, 155, 112972. https://doi.org/10.1016/j.lwt.2021.112972
34 da Silva, T. L. T., Arellano, D. B., & Martini, S. (2019). Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 121, 900–909. https://doi.org/10.1016/j.foodres.2019.01.018
35 da Silva, T. L. T., & Danthine, S. (2022). Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 154, 110997. https://doi.org/10.1016/j.foodres.2022.110997
36 Choi, K., Hwang, H., Jeong, S., Kim, S., & Lee, S. (2020). The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science, 85(10), 3432–3441. Portico. https://doi.org/10.1111/1750-3841.15442
37 Sun, C., Gunasekaran, S., & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21(4), 555–564. https://doi.org/10.1016/j.foodhyd.2006.06.003
38 Szumała, P., & Luty, N. (2016). Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 131–140. https://doi.org/10.1016/j.colsurfa.2016.04.022
39 Paradiso, V. M., Giarnetti, M., Summo, C., Pasqualone, A., Minervini, F., & Caponio, F. (2015). Production and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocolloids, 45, 30–40. https://doi.org/10.1016/j.foodhyd.2014.10.027
40 Pandule, V. S., Sharma, M., HC, D., & B, S. N. (2020). Omega‐3 fatty acid‐fortified butter: Preparation and characterisation of textural, sensory, thermal and physico‐chemical properties. International Journal of Dairy Technology, 74(1), 181–191. Portico. https://doi.org/10.1111/1471-0307.12750
41 Nasirpour‐Tabrizi, P., Azadmard‐Damirchi, S., Hesari, J., Khakbaz Heshmati, M., & Savage, G. P. (2020). Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 44(8). Portico. https://doi.org/10.1111/jfpp.14588
42 Sala, G., de Wijk, R. A., van de Velde, F., & van Aken, G. A. (2008). Matrix properties affect the sensory perception of emulsion-filled gels. Food Hydrocolloids, 22(3), 353–363. https://doi.org/10.1016/j.foodhyd.2006.12.009
43 da Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. Journal of the American Oil Chemists’ Society, 95(6), 673–685. Portico. https://doi.org/10.1002/aocs.12074
44 Dadalı, C., & Elmacı, Y. (2019). Characterization of Volatile Release and Sensory Properties of Model Margarines by Changing Fat and Emulsifier Content. European Journal of Lipid Science and Technology, 121(6). Portico. https://doi.org/10.1002/ejlt.201900003