تهیه امولسیون های پر شده با ژل بر پایه روغن کانولا-هیدروژلاتور های مختلف (ژلاتین، آگار-آگار و زانتان) بعنوان جایگزین کره

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
2 استاد گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
3 نایب رئیس هیات مدیره و مدیر عامل شرکت روغنکشی خرمشهر، تهران، ایران
چکیده


این مطالعه به بررسی تولید و ارزیابی امولسیون های پر شده با ژل بر پایه روغن کانولا، آب و هیدروژلاتورها به عنوان جایگزین کره تجاری پرداخته است. با توجه به نیاز روز افزون، این پژوهش تلاش نمود با بهره گیری از ساختاردهی فاز آبی با کمک هیدروژلاتورهای مختلف و روغن کانولا، امولسیون هایی را ایجاد نماید که از نظر ارزش عملکردی و تغذیه ای، مشابه یا حتی برتر از نمونه های کره های تجاری و در دسترس باشند. در این پژوهش، از هیدروژلاتورها (ژلاتین، آگار-آگار و زانتان) به عنوان عامل ساختارهی فاز آبی و دو نوع امولسیفایر (سوربیتان مونواستئارات و گلیسرول مونواستئارات) استفاده شده است. متغیرهای مختلفی (میزان هیدروژلاتور، نوع امولسیفایر و نسبت آب به روغن) در تهیه امولسیون ها مدنظر قرار گرفتند و در نهایت خصوصیات امولسیون ها از جمله پایداری حرارتی، اکسایشی، فیزیکی، حسی و بافتی مورد بررسی قرار گرفت. نتایج نشان داد که افزایش هیدروژلاتور منجر به افزایش سختی نمونه های بر پایه هر سه نوع هیدروژلاتور شد. در حالی که انتخاب نوع امولسیفایر تاثیرهای مختلفی را بر سایر خصوصیات با توجه به نوع هیدروژلاتور داشت. نمونه های بر پایه آگار-آگار و زانتان و حاوی گلیسرول مونواستئارات در مقایسه با سوربیتان مونواستئارات، دارای خصوصیات بهتری نسبت به نمونه های بر پایه ژلاتین بودند. نتایج حاصل از این پژوهش بطور کلی نشان می دهد که امولسیون ها پر شده با ژل تهیه شده می توانند به عنوان جایگزین مناسبی برای کره تجاری در صنعت غذا مورد استفاده قرار گیرند، بدون اینکه هیچ گونه تاثیری در کیفیت حسی و همچنین عملکردی محصول نهایی داشته باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation of Gel-filled Emulsion Based on Canola Oil-Different Hydrogelators (Gelatin, Agar-agar and Xanthan) as Butter Substitute

نویسندگان English

Mohammad Razmpour 1
Jamshid Farmani 2
Jafar Mohammadzadeh Milani 2
Teimoor Mohammadi 3
1 Department of Food Industry Science and Engineering, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Iran
2 Full Professor of the Department of Food Industry Science and Engineering, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Iran
3 Vice Chairman of the Board of Directors and Managing Director of Khorramshahr Oil Company, Tehran, Iran.
چکیده English

This study was investigated the production and evaluation of gel-filled emulsions based on canola oil, water, and hydrogelators as commercial butter substitutes. Given the growing need, this research attempted to create emulsions that are similar or even superior to commercially available butter samples in terms of functional and nutritional value, by utilizing aqueous phase structuring with the help of various hydrogelators and canola oil. In this study, hydrogelators (gelatin, agar-agar, and xanthan) used as aqueous phase structuring agents and two types of emulsifiers (sorbitan monostearate and glycerol monostearate). Various variables (amount of hydrogelator, type of emulsifier, and water-to-oil ratio) considered in the preparation of emulsions, and finally that investigated properties of the emulsions, including thermal, oxidative, physical, sensory, and textural stability. The results showed that increasing the hydrogelator led to an increase in the hardness of the samples based on all three types of hydrogelators. While the choice of emulsifier type had different effects on other properties depending on the type of hydrogelator. Agar-agar and xanthan-based samples containing glycerol monostearate compared to sorbitan monostearate had better properties than gelatin-based samples.The results of this study generally indicate that the prepared gel-filled emulsions can be used to a suitable substitute for butter products in the food industry, without having any effect on the sensory and functional quality of the final product.








کلیدواژه‌ها English

Canola oil
Emulsion
Gel
Gelatin
Agar-agar
Xanthan
1 Panchal, B., & Bhandari, B. (2020). Butter and Dairy Fat Spreads. Dairy Fat Products and Functionality, 509–532. https://doi.org/10.1007/978-3-030-41661-4_21
2 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food research international (Ottawa, Ont.), 147, 110486. https://doi.org/10.1016/j.foodres.2021.110486
3 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Oleogel-based emulsions: Concepts, structuring agents, and applications in food. Journal of food science, 86(7), 2785–2801. https://doi.org/10.1111/1750-3841.15788
4 Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: an opportunity for fat replacement in foods. Food & Function, 9(2), 758–773. https://doi.org/10.1039/c7fo01641g
5 Yang, X., Gong, T., Li, D., Li, A., Sun, L., & Guo, Y. (2019). Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydrate Polymers, 226, 115278. https://doi.org/10.1016/j.carbpol.2019.115278
6 Kangchai, W., Sangsirimongkolying, R., & Methacanon, P. (2018). Feasibility study of margarine substitute based on gelatin-oil emulsion gel. Chiang Mai Journal of Science, 45(1), 505-514.
7 García-Ortega, M. L., Toro-Vazquez, J. F., & Ghosh, S. (2021). Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Research International, 150, 110763. https://doi.org/10.1016/j.foodres.2021.110763
8 Lumor, S. E., Jones, K. C., Ashby, R., Strahan, G. D., Kim, B. H., Lee, G.-C., Shaw, J.-F., Kays, S. E., Chang, S.-W., Foglia, T. A., & Akoh, C. C. (2007). Synthesis and Characterization of Canola Oil−Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application. Journal of Agricultural and Food Chemistry, 55(26), 10692–10702. https://doi.org/10.1021/jf0710175
9 Martini, S., Tan, C. Y., & Jana, S. (2015). Physical Characterization of Wax/Oil Crystalline Networks. Journal of Food Science, 80(5). Portico. https://doi.org/10.1111/1750-3841.12853
10 AOCS 1996. Official Methods and Recommended Practices of the American Oil Chemists, Society, Champaign, AOCS Press.
11 Yılmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5(62), 50259–50267. https://doi.org/10.1039/c5ra06689a
12 Soddu, E., Rassu, G., Cossu, M., Giunchedi, P., Cerri, G., & Gavini, E. (2014). The effect of formulative parameters on the size and physical stability of SLN based on “green” components. Pharmaceutical Development and Technology, 21(1), 98–107. https://doi.org/10.3109/10837450.2014.971376
13 Dibildox-Alvarado, E., Rodrigues, J. N., Gioielli, L. A., Toro-Vazquez, J. F., & Marangoni, A. G. (2004). Effects of Crystalline Microstructure on Oil Migration in a Semisolid Fat Matrix. Crystal Growth & Design, 4(4), 731–736. https://doi.org/10.1021/cg049933n
14 Wang, P., Cui, N., Luo, J., Zhang, H., Guo, H., Wen, P., & Ren, F. (2016). Stable water-in-oil emulsions formulated with polyglycerol polyricinoleate and glucono-δ-lactone-induced casein gels. Food Hydrocolloids, 57, 217–220. https://doi.org/10.1016/j.foodhyd.2016.01.013
15 Silva, T. J., Fernandes, G. D., Bernardinelli, O. D., Silva, E. C. da R., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Research International, 140, 110036. https://doi.org/10.1016/j.foodres.2020.110036
16 Hwang, H., & Winkler‐Moser, J. K. (2020). Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. Journal of Food Science, 85(10), 3293–3302. Portico. https://doi.org/10.1111/1750-3841.15444
17 Pang, M., Shi, Z., Lei, Z., Ge, Y., Jiang, S., & Cao, L. (2020). Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas y Aceites, 71(4), 380. https://doi.org/10.3989/gya.0806192
18 Qiu, H., Qu, K., Zhang, H., & Eun, J.-B. (2023). Characterization and comparison of physical properties and in vitro simulated digestion of multi-component oleogels with different molecular weights prepared by the direct method. Food Hydrocolloids, 142, 108850. https://doi.org/10.1016/j.foodhyd.2023.108850
19 Luo, S.-Z., Hu, X.-F., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., Cao, L.-L., Pang, M., Hou, Z.-G., & Jiang, S.-T. (2019). Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry, 276, 209–217. https://doi.org/10.1016/j.foodchem.2018.09.161
20 Cheong, L., Tan, C., Long, K., Suria Affandi Yusoff, Mohd., & Lai, O. (2009). Physicochemical, Textural and Viscoelastic Properties of Palm Diacylglycerol Bakery Margarine During Storage. Journal of the American Oil Chemists’ Society, 86(8), 723–731. Portico. https://doi.org/10.1007/s11746-009-1413-4
21 Naeli, M. H., Milani, J. M., Farmani, J., & Zargaraan, A. (2022). Developing and optimizing low-saturated oleogel shortening based on ethyl cellulose and hydroxypropyl methyl cellulose biopolymers. Food Chemistry, 369, 130963. https://doi.org/10.1016/j.foodchem.2021.130963
22 da Silva, S. L., Amaral, J. T., Ribeiro, M., Sebastião, E. E., Vargas, C., de Lima Franzen, F., Schneider, G., Lorenzo, J. M., Fries, L. L. M., Cichoski, A. J., & Campagnol, P. C. B. (2019). Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat science, 149, 141–148. https://doi.org/10.1016/j.meatsci.2018.11.020
23 Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701
24 Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458–1467. Portico. https://doi.org/10.1111/ijfs.14469
25 Chai, X., Zhang, Y., Shi, Y., & Liu, Y. (2022). Crystallization and Structural Properties of Oleogel-Based Margarine. Molecules, 27(24), 8952. https://doi.org/10.3390/molecules27248952
26 Bobe, G., Hammond, E. G., Freeman, A. E., Lindberg, G. L., & Beitz, D. C. (2003). Texture of Butter from Cows with Different Milk Fatty Acid Compositions. Journal of Dairy Science, 86(10), 3122–3127. https://doi.org/10.3168/jds.s0022-0302(03)73913-7
27 Borriello, A., Masi, P., & Cavella, S. (2021). Novel pumpkin seed oil-based oleogels: development and physical characterization. LWT, 152, 112165. https://doi.org/10.1016/j.lwt.2021.112165
28 Tinello, F., Lante, A., Bernardi, M., Cappiello, F., Galgano, F., Caruso, M. C., & Favati, F. (2017). Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils. European Food Research and Technology, 244(4), 747–755. https://doi.org/10.1007/s00217-017-2995-y
29 Kupiec, M., Zbikowska, A., Marciniak-Lukasiak, K., & Kowalska, M. (2020). Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture, 10(6), 211. https://doi.org/10.3390/agriculture10060211
30 Naderi, M., Farmani, J., & Rashidi, L. (2018). The impact of saturated monoacylglycerols on the oxidative stability of Canola oil under various time/temperature conditions. Grasas y Aceites, 69(3), 267. https://doi.org/10.3989/gya.0346181
31 Hakimzadeh, V., Mahjoob, R., & Farmani, J. (2020). Production and evaluation of physicochemical and rheological properties of sorbitan mono-stearate and sorbitan tri-stearate based Oleogels as low SFA shortening. Authorea Preprints.
32 Nourbehesht, N., Shekarchizadeh, H., & Soltanizadeh, N. (2018). Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics sonochemistry, 42, 585–593. https://doi.org/10.1016/j.ultsonch.2017.12.029
33 Kim, M., Hwang, H.-S., Jeong, S., & Lee, S. (2022). Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT, 155, 112972. https://doi.org/10.1016/j.lwt.2021.112972
34 da Silva, T. L. T., Arellano, D. B., & Martini, S. (2019). Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 121, 900–909. https://doi.org/10.1016/j.foodres.2019.01.018
35 da Silva, T. L. T., & Danthine, S. (2022). Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 154, 110997. https://doi.org/10.1016/j.foodres.2022.110997
36 Choi, K., Hwang, H., Jeong, S., Kim, S., & Lee, S. (2020). The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science, 85(10), 3432–3441. Portico. https://doi.org/10.1111/1750-3841.15442
37 Sun, C., Gunasekaran, S., & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21(4), 555–564. https://doi.org/10.1016/j.foodhyd.2006.06.003
38 Szumała, P., & Luty, N. (2016). Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 131–140. https://doi.org/10.1016/j.colsurfa.2016.04.022
39 Paradiso, V. M., Giarnetti, M., Summo, C., Pasqualone, A., Minervini, F., & Caponio, F. (2015). Production and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocolloids, 45, 30–40. https://doi.org/10.1016/j.foodhyd.2014.10.027
40 Pandule, V. S., Sharma, M., HC, D., & B, S. N. (2020). Omega‐3 fatty acid‐fortified butter: Preparation and characterisation of textural, sensory, thermal and physico‐chemical properties. International Journal of Dairy Technology, 74(1), 181–191. Portico. https://doi.org/10.1111/1471-0307.12750
41 Nasirpour‐Tabrizi, P., Azadmard‐Damirchi, S., Hesari, J., Khakbaz Heshmati, M., & Savage, G. P. (2020). Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 44(8). Portico. https://doi.org/10.1111/jfpp.14588
42 Sala, G., de Wijk, R. A., van de Velde, F., & van Aken, G. A. (2008). Matrix properties affect the sensory perception of emulsion-filled gels. Food Hydrocolloids, 22(3), 353–363. https://doi.org/10.1016/j.foodhyd.2006.12.009
43 da Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. Journal of the American Oil Chemists’ Society, 95(6), 673–685. Portico. https://doi.org/10.1002/aocs.12074
44 Dadalı, C., & Elmacı, Y. (2019). Characterization of Volatile Release and Sensory Properties of Model Margarines by Changing Fat and Emulsifier Content. European Journal of Lipid Science and Technology, 121(6). Portico. https://doi.org/10.1002/ejlt.201900003