تولید آب میوه پروبیوتیک انبه و پرتقال: بررسی ویژگی های کیفی و زنده مانی باکتری پروبیوتیک لاکتوباسیلوس اسیدوفیلوس PTCC 1643

نویسندگان
1 دانشجوی دکترای تخصصی زیست فناوری مواد غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
3 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
هدف از این پژوهش، ارزیابی زنده­مانی باکتری لاکتوباسیلوس اسیدوفیلوس PTCC 1643 میکروکپسوله با ایزوله پروتئین سویا، صمغ زانتان و فروکتوالیگوساکارید به عنوان مواد دیواره به روش خشک کردن انجمادی پس از تلقیح به دو آب میوه انبه و پرتقال و بررسی ویژگی­های فیزیکوشیمیایی آب میوه­ها در دوره نگهداری می‌باشد. آزمون‌های بررسی زنده­مانی باکتری­ پروبیوتیک، تعیین اسیدیته، pH، بریکس، قند کل، اندیس فرمالین، ویژگی­های میکروبی و ارزیابی حسی آب میوه، انجام گردید. ارزیابی نتایج با آنالیز واریانس دو طرفهANOVA بدون تکرار و برای مقایسه تحلیل LSD با استفاده از نرم افزار Excel 2019 نمونه‌ها نشان داد که زنده مانی باکتری‌ها در نمونه‌های مختلف آب میوه انبه و پرتقال، دارای تفاوت معنی-دار نبود. همچنین بر اساس نتایج زمان، اختلاف معنی­داری در میانگین زنده­مانی باکتری پروبیوتیک تلقیح شده در نمونه آب میوه، طی زمان نگهداری وجود دارد. دمای پایین نگهداری نمونه‌ها، pH پایین و اسیدیته بالا در نمونه‌ها مانع رشد باکتری‌ها شده، به طوریکه رشد آن‌ها را محدود می‌کند و در نهایت جمعیت میکروبی در طول زمان نگهداری کاهش می‌یابد. همچنین بر اساس نتایج حاصل شده، میزان زنده­مانی باکتری درون پوشانی شده با صمغ زانتان، ایزوله پروتئین سویا و فروکتوالیگوساکارید بیشتر از نمونه‌های آب میوه با باکتری آزاد بود. در واقع به علت ساختار چند کاتیونی و فیزیکی مواد دیواره که لایه پوششی اطراف باکتری ایجاد می‌کنند موجب استحکام دیواره میکروکپسول‌ها و محافظت از باکتری می‌گردند. بر اساس نتایج نمونه و زمان، اختلاف معنی داری در ویژگی­های فیزیکوشیمیایی آب میوه ها شامل اسیدیته، pH، قند کل، اندیس فرمالین میانگین نمونه‌ها در طی زمان ماندگاری آن‌ها و نوع آب میوه مشاهده نگردید. از نظر ارزیابی حسی آب میوه­ها در طی زمان و بسته به نوع آب میوه، نتایج بین میانگین نمونه‌های آب پرتقال و آب انبه مورد مطالعه تفاوت معنی­داری مشاهده نشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of probiotic Mango and Orange juices: Evaluation of qualitative properties and viability of probiotic Lactobacillus acidophilus PTCC 1643

نویسندگان English

Maryam Abbasi Ghaznaq 1
Mahmoud Rezazadbari 2
Mohammad Alizadeh Khaledabad 2
Saber Amiri 3
1 PhD candidate of Food Biotechnology, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده English

This study aimed to evaluate the viability of microencapsulated Lactobacillus acidophilus PTCC 1643 with soy protein isolate, xanthan gum and fructooligosaccharide as wall materials by freeze-drying after inoculation into two mango and orange juices and to investigate the physicochemical properties of the juices during storage. Tests were performed to evaluate the viability of probiotic bacterium, determine acidity, pH, Brix, total sugar, formalin index, microbial properties, and sensorial evaluation of the juice. Evaluation of the results with two-way ANOVA analysis without repetition and LSD analysis for comparison of the samples using Excel 2019 software showed that the viability of bacterium in mango and orange juice samples did not have a significant difference. Also, based on the time results, there was a considerable difference in the average viability of probiotic bacterium inoculated in the juice sample during storage. The low storage temperature of the samples, low pH and high acidity prevented the growth of bacterium, so it limited their growth and ultimately decreased the microbial population during the storage period. Also,based on the results obtained, the survival rate of microencapsulated bacterium with xanthan gum, soy protein isolate and fructooligosaccharide was higher than that of fruit juice samples with free bacterium. In fact, due to the multi-cationic and physical structure of the wall materials that create a coating layer around the bacterium, they strengthen the microcapsule wall and protect the bacterium. Based on the results of the sample and time, no significant difference was observed in the physicochemical properties of the fruit juices including acidity, pH, total sugar, formalin index of the samples during their shelf life and the type of fruit juice. In terms of sensorial evaluation of fruit juices over time and depending on the type of fruit-juice, no significant difference was observed between the orange juice and mango juice samplesstudied.

کلیدواژه‌ها English

Encapsulation
Lactobacillus acidophilus PTCC1643
Probiotic juice
[1] Shahmoradi, Z., Khaledabad, M. A., & Amiri, S. (2023). Effect of co-encapsulation of Lactobacillus acidophilus LA5 and selenium in hydrogelated matrix of basil seed mucilage/sodium caseinate on properties of set yogurt. Food Bioscience, 55, 103039.
[2] Amiri, S., Kohneshahri, S. R. A., & Nabizadeh, F. (2022). The effect of unit operation and adjunct probiotic culture on physicochemical, biochemical, and textural properties of Dutch Edam cheese. LWT, 155, 112859.
[3] Amiri, S., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Rezaei Mokarram, R., & Sowti Khiabani, M. (2021). Co-production of parabiotic metabolites by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12 in dairy effluents. Chemical Review and Letters, 4(2), 66-76.
[4] Zhang, L. D. H. (2020). Recent advances in probiotics encapsulation by electrospinning. ES Food & Agroforestry, 2, 3-12.
[5] Bahmanpour, H., Sowti Khiabani, M., & Pirsa, S. (2024). Improving the microbial and physicochemical shelf life of yufka paste using Lactobacillus plantarum and calcium propionate. Food Science & Nutrition, 12(3), 1635-1646.
[6] Shinde, T., Sun-Waterhouse, D., & Brooks, J. (2014). Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food and Bioprocess Technology, 7(6), 1581-1596.
[7] Soleimanian, D., Pirsa, S., & Pirmohamadi, R. (2019). Using whey powder and valerian extracts in orange juice and study the physicochemical properties of the product.
[8] Hazirah, M. N., Isa, M. I. N., & Sarbon, N. M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9, 55-63.
[9] Balasubramanian, R., Kim, S. S., Lee, J., & Lee, J. (2019). Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. International journal of biological macromolecules, 123, 1020-1027.
[10] Moradi, M., Daneshzad, E., & Azadbakht, L. (2020). The effects of isolated soy protein, isolated soy isoflavones and soy protein containing isoflavones on serum lipids in postmenopausal women: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 60(20), 3414-3428.
[11] Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K., & Yan, L. (2020). Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. Journal of Food Engineering, 265, 109697.
[12] Bis-Souza, C. V., Pateiro, M., Domínguez, R., Penna, A. L., Lorenzo, J. M., & Barretto, A. C. S. (2020). Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat science, 159, 107936.
[13] Mishra, S., & Mishra, H. N. (2013). Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk. Food and Bioprocess Technology, 6(11), 3166-3176.
[14] Vaniski, R., da Silva, S. C., da Silva‐Buzanello, R. A., Canan, C., & Drunkler, D. A. (2021). Improvement of Lactobacillus acidophilus La5 microencapsulation viability by spraydrying with rice bran protein and maltodextrin. Journal of Food Processing and Preservation, 45(4), e15364.
[15] Amiri, S., Nezamdoost-Sani, N., Mostashari, P., McClements, D. J., Marszałek, K., & Mousavi Khaneghah, A. (2024). Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical Reviews in Food Science and Nutrition, 64(8), 2130-2156.
[16] Dehkordi, S. S., Alemzadeh, I., Vaziri, A. S., & Vossoughi, A. (2020). Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria. Applied biochemistry and biotechnology, 190(1), 182-196.
[17] González-Ferrero, C., Irache, J. M., Marín-Calvo, B., Ortiz-Romero, L., Virto-Resano, R., & González-Navarro, C. J. (2020). Encapsulation of probiotics in soybean protein-based microparticles preserves viable cell concentration in foods all along the production and storage processes. Journal of microencapsulation, 37(3), 242-253.
[18] Sohrabpour, S., Rezazadeh Bari, M., Alizadeh, M., & Amiri, S. (2021). Investigation of the rheological, microbial, and physicochemical properties of developed synbiotic yogurt containing Lactobacillus acidophilus LA‐5, honey, and cinnamon extract. Journal of Food Processing and Preservation, 45(4), e15323.
[19] Premjit, Y., & Mitra, J. (2021). Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design. Food and Bioprocess Technology, 14(9), 1712-1729.
[20] Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology, 60(2), 773-780.
[21] Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N., Grosso, C. R., & Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International, 66, 424-431.
[22] Ma, J., Xu, C., Yu, H., Feng, Z., Yu, W., Gu, L., ... & Hou, J. (2021). Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocolloids, 111, 106381.
[23] Yasmin, I., Saeed, M., Pasha, I., & Zia, M. A. (2019). Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions. Probiotics and antimicrobial proteins, 11(2), 413-426.
[24] Hosseini, S., Mohammadian, T., Abbaspour, M. and Alishahi, M. (2018). The effect of microencapsulation with alginate/chitosan on survival of probiotic bacteria (Lactobacillus plantarum) in the simulated condition of stomach and intestines in Huso huso. Iranian Scientific Fisheries Journal. 27(2), 161-172.
[25] Peinado, I., Lesmes, U., Andrés, A. and McClements, D. (2010). Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir, 26(12), 9827-9834.
[26] Huq, T., Fraschini, C., Khan, A., Riedl, B., Bouchard, J., & Lacroix, M. (2017). Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydrate polymers, 168, 61-69.
[27] Duman, D., & Karadag, A. (2021). Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: characterisation and assessment of viability during storage and simulated gastrointestinal digestion. International Journal of Food Science & Technology, 56(2), 927-935.
[28] Motalebi Moghanjougi, Z., Rezazadeh Bari, M., Alizadeh Khaledabad, M., Amiri, S., & Almasi, H. (2021). Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition, 9(9), 5103-5111.
[29] Çabuk, B., & Harsa, Ş. (2015). Whey protein-pullulan (WP/Pullulan) polymer blend for preservation of viability of Lactobacillus acidophilus. Drying Technology, 33(10), 1223-1233.
[30] Oliveira, R. P. D. S., Perego, P., Converti, A., & De Oliveira, M. N. (2009). Effect of inulin on growth and acidification performance of different probiotic bacteria in co-cultures and mixed culture with Streptococcus thermophilus. Journal of food engineering, 91(1), 133-139.
[31] Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241.
[32] bbel, A. (2007). The sustainability of functional foods. Social Science & Medicine, 64(3), 554-561.
[33] Perez-Cacho, P. R., & Rouseff, R. (2008). Processing and storage effects on orange juice aroma: A review. Journal of Agricultural and Food Chemistry, 56(21), 9785-9796.