بهینه سازی و بررسی سینتیک فرآیند شفاف سازی آب هویج سیاه با استفاده از آنزیم پکتیناز

نویسندگان
1 دانش آموخته کارشناس ارشد زیست فناوری مواد غذایی، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
3 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه
چکیده
هدف ازاین­مطالعه، بهینه­سازی فعالیت و بررسی سینیتیک آنزیم پکتیناز (EC 3.2.1.15) درشفاف‌سازی آب­هویج‌سیاه می‌باشد. بدین منظورتاثیر فاکتورهای مستقل، شامل غلظت‌های مختلف آنزیم پکتیناز ( gr/hl 6،7، 5)، بریکس (75/7، 7 ، 25/6 ، 5/5 ، 75/4 ،4 درجه بریکس)، زمان­ (5/5، 3 ،5/0 ساعت) و دما (55، 50، 45 درجه سانتیگراد) برشفاف‌سازی و ویژگی‌های آب‌هویج‌سیاه بررسی شد. بدین منظور براساس بیشینه مقدار رنگ، کمینه مقدار کدورت وبیشینه مقدار آنتوسیانین وبا طرح آماری باکس-بنکن[1] شرایط بهینه تعیین گردید. بیشترین تاثیرآنزیم پکتینازدر پانزده دقیقه ابتدایی‌ صورت گرفت. در این بازه نمودار تغییرات بصورت خطی بود و بعد ازآن ‌تقریبا روند ثابتی را طی کرد و میزان کاهش کدورت بعد از این مدت روند نزولی را طی کرد و بسیار ناچیز کاهش پیدا کرد ولی متوقف نشد. نیز بیشترین تاثیرآنزیم پکتیناز در افزایش رنگ‌ در دوازده دقیقه ابتدایی صورت گرفت. در این مدت نمودار بصورت خطی بود و بعد از آن روند تغییرات بسیار کٌند بود. براساس نتایج، تاثیر دما، زمان و غلظت آنزیم برکاهش کدورت معنیدار بوده (p≤0.05) و همچنین اثر دما و زمان ‌برکاهش کدورت بصورت نمایی بود. اثر زمان فرآیند بر تغییرات رنگ معنیدار نبود ولی اثر زمان و غلظت آنزیم برافزایش رنگ معنی‌دارو بصورت درجه دو بود و با افزایش دما از45به50درجه سانتیگراد، شدت رنگ افزایش داشت وبا افزایش بیشتر دما تا55درجه سانتیگراد، شدت رنگ کاهش یافت. تاثیر هرسه فاکتور مورد مطالعه برمیزان آنتوسیانین معنی‌داربود و با افزایش دما، زمان و غلظت آنزیم، مقدار آنتوسیانین افزایش داشت. نقطه بهینه شفاف‌سازی در مقدار غلظتg/hl 7، زمان5/5ساعت و دمای55درجه سانتیگراد بدست آمد. نتیجه­گیری کلی نشان داد شرایط بهینه بدست آمده، تاثیر مثبت بر ویژگی­های کیفی محصول را نشان داد.


[1] Box–Behnken design
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing and investigating the kinetics of black carrot juice clarification process using pectinase enzyme

نویسندگان English

Norollah Makhdoom 1
Mahmoud Rezazadbari 2
Mohammad Alizadeh Khaledabad 2
Saber Amiri 3
1 Master's degree in Food Biotechnology, Department of Food Science and Industry, Faculty of Agriculture, Urmia University
2 Professor, Department of Food Science and Industry, Faculty of Agriculture, Urmia University
3 Assistant Professor, Department of Food Science and Industry, Faculty of Agriculture, Urmia University
چکیده English

This study aims to optimize the activity and investigate the kinetics of the pectinase enzyme (EC 3.2.1.15) in clarifying black carrot juice. For this purpose, the effect of independent factors, including different concentrations of pectinase enzyme (5,6, and 7 gr/hl), brix (4, 4.75, 5.5, 6.25, 7, and 7.75 ◦Brix), time (0.5, 3, and 5.5 h), and temperatures (45, 50, and 55 ◦C) were investigated for the clarification and characteristics of black carrot juice. For this purpose, optimal conditions were determined based on the maximum amount of color, the minimum amount of turbidity and the maximum amount of anthocyanin and the Box–Behnken statistical design. The greatest effect of the pectinase enzyme occurred in the first fifteen minutes. The change graph was linear in this period and followed an almost constant trend. The rate of turbidity decrease after this period followed a downward trend and decreased very slightly but did not stop. Also, the greatest effect of the pectinase enzyme in increasing color occurred in the first twelve minutes. In this period, the graph was linear and then the change trend was very slow. Based on the results, the effect of temperature, time and enzyme concentration on turbidity reduction was significant (p≤0.05) and also the effect of temperature and time on turbidity reduction was exponential or quadratic. The effect of process time on color changes was not significant, but the effect of time and enzyme concentration on the increase of color was significant and quadratic, and increasing the temperature from 45 to 50 ◦C, the color intensity increased, and increasing the temperature to 55 ◦C, the color intensity decreased. The optimal point of clarification was obtained at a concentration of 7 g/hl, a time of 5.5 h and a temperature of 55 ◦C.

کلیدواژه‌ها English

Pectinase enzyme
black carrot juice
Kinetics
Box–Behnken design
Clarification
1. Amiri, S., & Rajabi, M. (2021). An overview of the application of natural antimicrobial compounds from plant, animal and microbial origin in foods. Journal of food science and technology (Iran), 18(119), 143-156.
2. Chen, M.-F., 2009. Attitude toward organic foods among Taiwanese as related to health consciousness, environmental attitudes, and the mediating effects of a healthy lifestyle. Br. Food J. 111 (2), 165-178.
3. Alizadeh, S., Pirsa, S., & Amiri, S. (2023). Development of a colorimetric sensor based on nanofiber cellulose film modified with ninhydrin to measure the formalin index of fruit juice. International Journal of Biological Macromolecules, 253, 127035.
4. Pirsa, S., Banafshechin, E., Amiri, S., Rahimirad, A., & Ghafarzadeh, J. (2021). Detection of fraud of palm, sunflower, and corn oil in butter using HPLC profile of tocopherols and tocotrienols by response surface method. Journal of the Iranian Chemical Society, 18, 1167-1177.
5. Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & da Silveira, M. M. (2011). Clarification of fruit juices by fungal pectinases. LWT-food Science and Technology, 44(10), 2217-2222.
6. Tajchakavit, S., J.I. Boye and R. Couture, "Effect of processing on post-bottling haze formation in apple juice", Food Research Internat., 34, 415-424 (2001).
7. Benitez, E. I., & Lozano, J. E. (2007). Effect of gelatin on apple juice turbidity. Latin American applied research, 37(4), 261-266
8. Nighojkar, A., Patidar, M. K., & Nighojkar, S. (2019). Pectinases: production and applications for fruit juice beverages. In Processing and sustainability of beverages (pp. 235-273). Woodhead Publishing.
9. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource technology, 77(3), 215-227.
10. Arjeh, E., Pirouzifard, M. K., & Pirsa, S. (2018). Enzymatic pre-treatment of raw sugar beet juice using pectinase to improve the conventional purification process. Innovative Food Technologies, 6(1), 45-54.
11. Arjeh, E., Pirouzifard, M., & Pirsa, S. (2019). Purification of beet molasses using bentonite and gelatin: process evaluation and optimization. Journal of food science and technology (Iran), 16(88), 289-301
12. Lambri, M., Dordoni, R., Silva, A., & De Faveri, D. M. (2012). Comparing the impact of bentonite addition for both must clarification and wine fining on the chemical profile of wine from Chambave Muscat grapes. International journal of food science & technology, 47(1), 1-
13. Akshi Aziz, Summer 1999, Transparency of Juice, Mirkhalil Victory Fard, Urmia, University Jihad Publications, 178
14. Gökmen, V., & Çetinkaya, Ö. (2007). Effect of pretreatment with gelatin and bentonite on permeate flux and fouling layer resistance during apple juice ultrafiltration. Journal of food engineering, 80(1), 300-305.
15. Dereli, B. O., Türkyılmaz, M., & Özkan, M. (2023). Clarification of pomegranate and strawberry juices: Effects of various clarification agents on turbidity, anthocyanins, colour, phenolics and antioxidant activity. Food Chemistry, 413, 135672.
16. Türkyılmaz, M., & Özkan, M. (2012). Kinetics of anthocyanin degradation and polymeric colourformation in black carrot juice concentrates during storage. International journal of food science & technology, 47(11), 2273-2281.
17. Amiri, S., Rezazad Bari, L., Malekzadeh, S., Amiri, S., Mostashari, P., & Ahmadi Gheshlagh, P. (2022). Effect of Aloe vera gel‐based active coating incorporated with catechin nanoemulsion and calcium chloride on postharvest quality of fresh strawberry fruit. Journal of Food Processing and Preservation, 46(10), e15960.
18. Chatatikun, M., & Chiabchalard, A. (2013). Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. Journal of Chemical and Pharmaceutical Research, 5(4), 97-102.
19. Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological research, 55(3), 207-216.
20. Akhtar, S., Rauf, A., Imran, M., Qamar, M., Riaz, M., & Mubarak, M. S. (2017). Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends in Food Science & Technology, 66, 36-47.
21. Rezazad Bari, L., & Amiri, S. (2022). The Application of Packaging Containing Titanium Dioxide Nanoparticles on the Physicochemical and Biochemical Characteristics of Grape Fruit During Cold Storage. Packaging Science and Art, 12(48), 1-10.
22. Witrowa-Rajchert, D., Bawoł, A., Czapski, J., & Kidoń, M. (2009). Studies on drying of purple carrot roots. Drying Technology, 27(12), 1325-1331.
23. Kırca, A., Özkan, M., & Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food chemistry, 101(1), 212-218.
24. Wang, Q., Liu, K. Y., Zhang, Q., An, J. S., Xie, Z. Z., Chen, Z., ... & Li, R. Y. (2023). Optimisation of clarification process of glutinous rice tea wine, and its antioxidant activity. International Food Research Journal, 30(1), 205-215.
25. Ozyilmaz, G., & Gunay, E. (2023). Clarification of apple, grape and pear juices by co-immobilized amylase, pectinase and cellulase. Food Chemistry, 398, 133900
26. Dhiman, S. S., Garg, G., Sharma, J., & Mahajan, R. (2011). Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnology, 28(6), 746-755.
27. Norjana, I., & Noor Aziah, A. A. (2011). Quality attributes of durian (Durio zibethinus Murr) juice after pectinase enzyme treatment. International Food Research Journal, 18(3).
28. Yusuf, E., Tkacz, K., Turkiewicz, I. P., Wojdyło, A., & Nowicka, P. (2021). Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. European Food Research and Technology, 247, 3053-3062.
29. Saleem, M. Q., Akhtar, S., Imran, M., Riaz, M., Rauf, A., Mubarak, M. S., ... & Hassanien, M. F. (2018). Antibacterial and anticancer characteristics of black carrot (Daucus Carota) extracts. J. Med. Spice Plants, 22, 40-44.
30. Legentil, A., Guichard, I., Piffaut, B., & Haluk, J. P. (1995). Characterization of strawberry pectin extracted by chemical means. LWT-Food Science and Technology, 28(6), 569-576.