استفاده از پوشش‌های خوراکی برپایه صمغ گیاه گوار و اسانس آویشن شیرازی جهت بهبود کیفیت آریل‌های انار رقم زاغ در دوره انبارمانی

نویسندگان
1 دانشجوی کارشناسی ارشد گروه علوم باغبانی دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، ایران.
2 دانشیار گروه علوم باغبانی دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، ایران
چکیده
آریل­های انار به­دلیل حساسیت زیاد به عوامل قارچی ماندگاری کمی دارند. استفاده از ترکیبات شیمیایی ضد قارچ برای افزایش عمر پس از برداشت میوه­ها نگرانی­های زیادی ایجاد کرده است. به­همین دلیل استفاده از روش‌های ایمن برای کنترل فساد و حفظ کیفیت آریل‌های انار فرآوری‌شده در زمان نگه­داری ضروری است. پوشش­های خوراکی ساخته شده از مواد زیست­تخریب­پذیر به­عنوان یک فناوری برای افزایش ماندگاری محصولات پوشش­داده شده از طریق تغییر اتمسفر درونی آنها در نظر گرفته شده است. هدف از این مطالعه بررسی تأثیر پوشش‌های خوراکی صمغ گوار غنی‌شده با اسانس آویشن شیرازی (Zataria multiflora) بر افزایش عمر انبارمانی و حفظ کیفیت آریل‌های میوه انار رقم "زاغ" در طول نگهداری در دمای 2±4 درجه سانتی­گراد بود. این مطالعه در قالب طرح کاملا تصادفی (CRD) در یک آزمایش فاکتوریل با استفاده از صمغ گوار در چهار غلظت (0، 25/0، 5/0 و 1 درصد) و اسانس آویشن در سه سطح (0، 500 و 1000 میکرولیتر برلیتر) و در چهار زمان (7، 14، 21 و 28 روز) با سه تکرار انجام شد. نتایج نشان داد که با گذشت زمان وزن آریل­ها، TA و محتوای آنتوسیانین به­طور قابل­ملاحظه­ای کاهش یافت؛ درحالی­که میزان TSS، شاخص طعم، pH و محتوای فنل افزایش یافت. در آخرین روز انبارمانی، آریل­های پوشش­داده شده با تیمار ترکیبی 25/0 درصد صمغ­گوار + 500 میکرولیتر بر لیتر اسانس آویشن نسبت به سایر تیمارها کاهش وزن کمتر و شاخص طعم بالاتری نشان دادند. استفاده از صمغ­گوار در هر سه غلظت به­طور معنی­داری موجب کاهش TA و محتوای آنتوسیانین و افزایش مواد جامد محلول کل و محتوای فنل آریل­ها شد. با افزایش غلظت اسانس آویشن TA و pH به­طور معنی­داری کاهش یافت. به­طور کلی می­توان غلظت­های پائین صمغ گوار (25/0 و 5/0 درصد) و نیز غلظت 500 میکرولیتر در لیتر اسانس آویشن شیرازی را در بهبود کیفیت و افزایش ماندگاری آریل­های انار رقم زاغ معرفی نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of edible coatings based on gum of guar plant and essential oil of Shirazi thyme for improving quality of pomegranate arils cv. ‘Zagh’ during storage life

نویسندگان English

Ali Izadi 1
Maryam Dehestani-Ardakani 2
Heidar Meftahizadeh 2
Jalal Gholamnezhad 2
1 M. Sc. student, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
2 Associate Professor, Department of Horticultural Science, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
چکیده English

mPomegranate arils have a short shelf lifedue to their high sensivity to fungal agent. The use of chemical antifungal compounds to increase the postharvest life of fruit has raised many concerns. For this reason, it is necessary to use safe methods to control spoilage and maintain the quality of minimally processed pomegranate cv. zagh arils during storage. The edible coating made from biodegradable ingredients has been considered as a technology to extend the shelf life of coated products through modifying their internal atmosphere. The aim of this study was to assess the influence of guar gum edible coatings enriched with Shirazi thymus (Zataria multiflora) essential oils on extending cold storage life and maintaining fruit quality of minimally processed pomegranate arils during storage at 4 ± 2 °C. This study was conducted in a completely randomized design (CRD) in a factorial experiment using guar gum in four concentrations (0, 0.25, 0.5 and 1%), essential oils of thyme at three levels (0, 500 and 1000 µl/L) in four periods of times (7, 14, 21 and 28 days) with three repetitions. The results showed that by the time, the weight of arils, titratable acidity and anthocyanin significantly decreased; while the amount of soluble solids content, taste index, pH and phenol content increased. On the last day of storage, arils coated with 0.25% guar gum + 500 µl/L of thyme essential oil showed lower weight loss and higher taste index compared to other treatments.The application of guar gum in all three concentrations significantly decreased titratable acidity and anthocyanin content and increased total soluble solids and phenol content of arils. Titratable acidity and pH decreased significantly by increasing the concentration of thyme essential oil. In general, low concentrations of guar gum (0.25 and 0.5%) and 500 µl/L of thyme essential oil can be introduced.

کلیدواژه‌ها English

Taste index
Weight loss
Quality
Storage life
phenol content
[1] Maringgal, B., Hashim, N., Tawakkal, I. S. M. A., and Mohamed, M. T. M. 2020. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology, 96:
253– 267.https://doi.org/10.1016/j.tifs.2019.12.024
[2] Nair, M. S., Tomar, M., Punia, S., Kukula-Koch, W., and Kumar, M. 2020. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables:
A review. International Journal of Biological Macromolecules, 164: 304–320. https://doi.org/10.1016/j.ijbiomac.2020.07.083
[3] O'Grady, L., Sigge, G., Caleb, O. J., and Opara, U. L. 2014. Effects of storage temperature and duration on chemical properties, proximate composition and selected bioactive components of pomegranate (Punica granatum L.) arils. LWT-Food Science and Technology, 57(2): 508-515. https://doi.org/10.1016/j.lwt.2014.02.030.
[4] Faria, A., and Calhau, C. 2011. The bioactivity of pomegranate: impact on health and disease. Critical reviews in food science and nutrition, 51(7): 626-634. https://doi.org/10.1080/10408391003748100.
[5] El-Nemr, S. E., Ismail, I. A., and Ragab, M. 1990. Chemical composition of juice and seeds of pomegranate fruit. Food/Nahrung, 34(7): 601-606. https://doi.org/10.1002/food.19900340706.
[6] López-Rubira, V., Conesa, A., Allende, A., and Artés, F. 2005. Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C.Postharvest Biology and Technology, 37(2): 174-185. https://doi.org/10.1016/j.postharvbio.2005.04.003.
[7] Rodov, V., Schmilovitch, Z., Ronen, B., Hoffman, A., Egozi, H., Porat, R., Goldman, G., Horev, B., Weiss, B., Vinokur, Y., Shomer, I., and Holland, D. 2005. April. Mechanically separated pomegranate arils: a new lightly processed fresh product. 5th IFPA Poster Session at Fresh-Cut Expo, Phoenix, AZ.
[8] Fan, N., Wang, X., Sun, J., Lv, X., Gu, J., Zhao, C., and Wang, D. 2022. Effects of konjac glucomannan/pomegranate peel extract composite coating on the quality and nutritional properties of fresh-cut kiwifruit and green bell pepper. Journal of Food Science and Technology, 59(1): 228–238. https://doi.org/10.1007/s13197-021- 05006-7
[9] Moradinezhad, F., and Dorostkar, M. 2021. Effect of vacuum and modified atmosphere packaging on the quality attributes and sensory evaluation of fresh jujube fruit. International Journal of Fruit Science, 21(1): 82–94. https://doi.org/10.1080/ 15538362.2020.1858470
[10] Dar, A. H., Bashir, O., Khan, S., Wahid, A., and Makroo, H. A. 2020. Fresh-cut products: Processing operations and equipments. In Fresh-Cut Fruits and Vegetables (pp. 77–97). Academic Press. https://doi.org/10.1016/B978-0-12-816184-5.00004-5.
[11] Moradinezhad, F., Naeimi, A., and Farhangfar, H. 2018. Influence of edible coatings on postharvest quality of fresh Chinese jujube fruits during refrigerated storage. Journal of Horticulture and Postharvest Research, 1(1): 1-14. 10.22077/ JHPR.2018.1119.1002.
[12] Tiwari, V. K., Verma, V. C., Khushboo, A., Kumar, K., Tsewang, T., Verma, A., and Acharya, S. 2022. Edible coating for postharvest management of fruits and vegetables. The Pharma Innovation Journal, 11(3): 970–978.
[13] Jawad, A. H., Islam, M. A., and Hameed, B. 2017. Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16. International Journal of Biological
Macromolecules, 95: 743–749. https://doi.org/10.1016/j.ijbiomac.2016.11.087
[14] Li, A., Lin, R., Lin, C., He, B., Zheng, T., Lu, L., and Cao, Y. 2016. An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydrate Polymers,
148: 272–280. https://doi.org/10.1016/j.carbpol.2016.04.070
[15] Hosseini, B., Saedisomeolia, A., Wood, L. G., Yaseri, M., and Tavasoli, S. 2016. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complementary Therapies in Clinical Practice, 22, 44–50. https://doi.org/10.1016/j.ctcp.2015.12.003
[16] Pateiro, M., Munekata, P. E. S., Sant’Ana, A. S., Domínguez, R., Rodríguez-Lázaro, D., and Lorenzo, J. M. 2021. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. International Journal of Food Microbiology, 337: 108966.
[17] Moreira, S. P., Carvalho, W. M., Alexandrino, A. C., Paula, H. C. B., Rodrigues, M. C. P., Figueiredo, R. W., Maia, G. A., Figueiredo, E. M. A. T., and Brasil, I. M. 2014. Freshness retention of minimally processed melon using different packages and multilayered edible coating containing microencapsulated essential oil, International Journal of Food Science. and Technology, 1-9.
[18] Guerreiro, A. C., Gagoa, C. M. L., Faleiro, M. L., Miguel, M. G. C., and Antunes, M. D. C. 2015. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biology and Technology, 100: 226–233.
[19] Firdous, N., Moradinezhad, F., Farooq, F., and Dorostkar, M. 2022. Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: a review. Food Chemistry, 135186.
[20] Peter, K. V., and Babu, K. N. 2012. Introduction to herbs and spices: medicinal uses and sustainable production. In K.V. Peter (Ed.), Handbook of herbs and spices, Woodhead Publishing Limited, Cambridge, pp. 1-16
[21] Hyldgaard, M., Mygind, T., and Meyer, R.L. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components, Frontiers in Microbiology, 3: 1-24.
[22] Angioni, A., Barra, A., Coroneo, V., Dessi, S., and Cabras, P. 2006. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. Ssp. Stoechas essential oils from stem/leaves and flowers. Journal of Agriculture and Food Chemistry, 54 (12): 4364–4370. https://doi.org/10.1021/jf0603329.
[23] Masotti, V., Juteau, F., Bessiere, J.M., and Viano, J. 2003. Seasonal and phenological variations of the essential oil from the narrow endemic species Artemisia molinieri and its biological activities. Journal of Agriculture and Food Chemistry, 51 (24): 7115–7121. https://doi.org/10.1021/jf034621y.
[24] Lopez-Rubia, V., Conesa, A., Allende, A., and Artes, F. 2005. Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biology and Technology, 37: 174–185
[25] Saei-Dehkordi, S. S., Tajik, H., Moradi, M., & Khalighi-Sigaroodi, F. 2010. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology, 48(6): 1562-1567.
[26] Rojas-Argudo, C., Del Río, M., and Pérez-Gago, M. 2009. Development and optimization of locust bean gum (LBG)-based edible coatings for postharvest storage of ‘Fortune’mandarins. Postharvest Biology and Technology, 52: 227–234.
[27] Ghasemnezhad, M., Zareh, S., Shiri, M. A., and Javdani, Z. 2015. The arils characterization of five different pomegranate (Punica granatum) genotypes stored after minimal processing technology. Journal of food Science and Technology, 52(4), 2023-2032.
[28] Singleton, V. L., and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
[29] Popovic, M.B., Stajner, D., Slavko, K., and Sandra, B. 2012. Antioxidant capacity of cornelian cherry comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chemistry, 134: 734-741
[30] Amarante, C., and Banks, N.H. 2000. Postharvest physiology and quality of coated fruits and vegetables. Horticultural Review, 26: 161–238.
[31] Díaz-Mula, H.M., Serrano, M., and Valero, D. 2012. Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess Technology, 5: 2990–2997. https://doi.org/10.1007/s11947-011-0599-2.
[32] Dong, F., and Wang, X. 2018. Guar gum and ginseng extract coatings maintain the quality of sweet cherry. Lwt - Food Science and Technology, 89: 117–122. https://doi.org/10.1016/j.lwt. 2017.10.035.
[33] Saberi, B., Golding, J.B., Marques, J.R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C.J., and Stathopoulos, C.E. 2018. Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’oranges. Postharvest Biology and Technology, 137: 9–20.
[34] Ebrahimi, F., and Rastegar, S. 2020. Preservation of mango fruit with guar-based edible coatings enriched with Spirulina platensis and Aloe vera extract during storage at ambient temperature. Scientia Horticulturae, 265: 109258.
[35] Burdon, J., Pidakala, P., Martin, P., Billing, D., and Boldingh, H. 2016. Fruit maturation and the soluble solids harvest index for ‘Hayward’kiwifruit. Scientia Horticulturae, 213: 193–198.
[36] Naeem, A., Abbas, T., Ali, T.M., and Hasnain, A. 2018. Effect of guar gum coatings containing essential oils on shelf life and nutritional quality of green-unripe mangoes during low temperature storage. International Journal of Biological Macromolecules, 113: 403–410.
[37] Melo, T. A., Serra, I. M. R., de, S., Sousa, A. A., Sousa, T. Y. O., and Pascholati, S. F., 2018a. Effect of ascophyllum nodosum seaweed extract on post-harvest ‘tommy atkins’ mangoes. Rev. Bras. Frutic. 40. https://doi.org/10.1590/0100-29452018621.
[38] Melo, T.A., de Serra, I.M.R., de, S., Sousa, A.A., Sousa, T.Y.O., Pascholati, S.F., 2018b. Effect of Ascophyllum nodosum Seaweed Extract on Post-Harvest’Tommy Atkins’ mangoes. Revista Brasileira de Fruticultura, 40.
[39] Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., Araújo, W. L. 2018. Modifications in Organic Acid Profiles during Fruit Development and Ripening: Correlation or Causation Frontiers In Plant Science. pp. 9.
[40] Martínez-Romero, D., Castillo, S., Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valero, D., and Serrano, M. 2013. Aloe vera gel coating maintains quality and safety of ready-to-eat pomegranate arils. Postharvest Biology and Technology, 86: 107-112.
[41] Jahani, M., Pira, M., and Aminifard, M. H. 2020. Antifungal effects of essential oils against Aspergillus niger in vitro and in vivo on pomegranate (Punica granatum) fruits. Scientia Horticulturae, 264: 109188.
[42] Sogvar, O.B., Saba, M.K., Emamifar, A., 2016. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114: 29–35.
[43] Aminifard, M., and Mohammadi, S. 2013. Efficacy of plant essential oils to control postharvest decay of sweet cherry (Prunus avium L.) fruit. Journal of Horticultural Science and Biotechnology, 88: 79–84. https://doi.org/10.1080/14620316.2013.11512939.
[44] Mohammadi, S., Aroiee, H., Aminifard, M. H., and Jahanbakhsh, V. 2012. In vitro and in vivo antifungal activates of the essential oils of various plants against strawberry grey mold disease agent Botrytis cinerea. Archives of Phytopathology and Plant Protection, 45 (20): 2474–2484. https://doi.org/10.1080/03235408.2012.729422.
[45] Mohammadi, S., and Aminifard, M. H. 2012. Effect of essential oils on postharvest decay and some quality factors of peach (Prunus persica var. Redhaven). Journal of Biological & Environmental Science, 6 (17): 147–153.
[46] Emamifar, A. 2004. Evaluation of the effect of aloe vera gel as an oral coating on microbial, physicochemical and sensory properties of fresh strawberries during storage. Journal of Innovative Food Technologies, 6: 29-15.
[47] Eshghi, S., and Hashemi, M. 2013. The effect of nanoemulsion coating containing chitosan on increasing the shelf life and quality characteristics of strawberry fruit after harvest. Iranian Journal of Nutrition Sciences and Food Industry, 2: 9-19.
[48] Rice-Evans, C., Miller, N., and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science, 2: 152–159.
[49] Sakihama, Y., Cohen, M.F., Grace, S.C., and Yamasaki, H. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177: 67–80. https://doi.org/10.1016/S0300-483X(02)00196-8.
[50] Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., and Akhtar, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. International Journal of Biological
Macromolecules, 109: 1095–1107.
[51] Khaliq, G., Tengku, M., Mohamed, M., Mohd, H., Ding, P., and Ali, A. 2016. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biology and Technology, 111: 362–369. https://doi.org/10.1016/j. postharvbio.2015.09.029.