[1] Arfelli, F., Roguszewska, M., Torta, G., Iurlo, M., Cespi, D., Ciacci, L., & Passarini, F. (2024). Environmental impacts of food packaging: Is it all a matter of raw materials? Sustainable Production and Consumption, 49, 318-328.
[2] Acharyya, P. P., Sarma, M., & Kashyap, A. (2024). Recent advances in synthesis and bioengineering of bacterial nanocellulose composite films for green, active and intelligent food packaging. Cellulose, 31(12), 7163-7187.
[3] D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems. Processes, 12(10), 2085.
[4] Farajinejad, Z., Sani, I. K., Alizadeh, M., & Amiri, S. (2024). A review of recent advances in the photocatalytic activity of protein and polysaccharide-based nanocomposite packaging films: antimicrobial, antioxidant, mechanical, and strength properties. Journal of Polymers and the Environment, 32(8), 3437-3447.
[5] Hrnčič, M., Ivanovski, M., Cör, D., & Knez, Ž. (2019). Chia seeds. Salvia hispanica, 1-19.
[6] Enes, B. N., Moreira, L. P., Silva, B. P., Grancieri, M., Lúcio, H. G., Venâncio, V. P., ... & Martino, H. S. (2020). Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. Journal of food science, 85(2), 226-239.
[7] Orona-Tamayo, L. D., Valverde, E. M., & Paredes-Lopez, O. (2017). Chia-the new Golden seed for the 21st century: nutraceutical properties and technological uses. Chapter 17. Sustainable protein sources.
[8] Peláez, P., Orona-Tamayo, D., Montes-Hernández, S., Valverde, M. E., Paredes-López, O., & Cibrián-Jaramillo, A. (2019). Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Scientific reports, 9(1), 9761.
[9] Muñoz-Tébar, N., Carmona, M., Ortiz de Elguea-Culebras, G., Molina, A. and Berruga, M.I., 2022. Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2), p.213.
[10] Charles-Rodríguez, A.V., Rivera-Solís, L.L., Martins, J.T., Genisheva, Z., Robledo-Olivo, A., González-Morales, S., López-Guarin, G., Martínez-Vázquez, D.G., Vicente, A.A. and Flores-López, M.L., 2020. Edible films based on black chia (Salvia hispanica L.) seed mucilage containing Rhus microphylla fruit phenolic extract. Coatings, 10(4), p.326.
[11] Urbizo-Reyes, U., San Martin-González, M.F., Garcia-Bravo, J. and Liceaga, A.M., 2020. Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties. International Journal of Biological Macromolecules, 163, pp.854-864.
[12] Nikmaram, N., Budaraju, S., Barba, F. J., Lorenzo, J. M., Cox, R. B., Mallikarjunan, K., & Roohinejad, S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat science, 145, 245-255.
[13] Salehi, B., Selamoglu, Z., Sener, B., Kilic, M., Kumar Jugran, A., de Tommasi, N., ... & C. Cho, W. (2019). Berberis plants—drifting from farm to food applications, phytotherapy, and phytopharmacology. Foods, 8(10), 522.
[14] Ivan, I. M., Olaru, O. T., Popovici, V., Chițescu, C. L., Popescu, L., Luță, E. A., ... & Gîrd, C. E. (2024). Antioxidant and Cytotoxic Properties of Berberis vulgaris (L.) Stem Bark Dry Extract. Molecules, 29(9), 2053.
[15] Polianciuc, S. I., Ciorîță, A., Soran, M. L., Lung, I., Kiss, B., Ștefan, M. G., ... & Loghin, F. (2024). Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics, 13(8), 780.
[16] Abu-Odeh, A. M., & Talib, W. H. (2021). Middle East medicinal plants in the treatment of diabetes: a review. Molecules, 26(3), 742.
[17] Katekhong, W., Wongphan, P., Klinmalai, P., & Harnkarnsujarit, N. (2022). Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chemistry, 374, 131709
[18] Waseem, M., Rehman, W., Hussain, R., Hussain, S., Haq, S., & Anis-ur-Rehman, M. (2021). Evaluation of structural, electrical and magnetic properties of nanosized unary, binary and ternary particles of Fe 3 O 4, SnO 2 and TiO 2. Chemical Papers, 75, 2625-2638.
[19] Bibi, N., Haq, S., Rehman, W., Waseem, M., Rehman, M. U., Shah, A., ... & Rasheed, P. (2020). Low temperature fabrication of SnO2, ZnO and Zn2SnO4 nanostructures for the degradation of Rhodamine 6G: Characterization. Biointerface Res. Appl. Chem, 10, 5895-5900.
[20] Bouroutzika, E., Proikakis, S., Anagnostopoulos, A. K., Katsafadou, A. I., Fthenakis, G. C., & Tsangaris, G. T. (2021). Proteomics analysis in dairy products: cheese, a review. Applied Sciences, 11(16), 7622.
[21] Mistry, V. V., & Maubois, J. L. (2017). Application of membrane separation technology to cheese production. In Cheese (pp. 677-697). Academic Press.
[22] Soltani, M., Saremnezhad, S., Faraji, A. R., & Hayaloglu, A. A. (2022). Perspectives and recent innovations on white cheese produced by conventional methods or ultrafiltration technique. International Dairy Journal, 125, 105232.
[23] Lee, N. K., Jeewanthi, R. K. C., Park, E. H., & Paik, H. D. (2016). Physicochemical and antioxidant properties of Cheddar -type cheese fortified with Inula britannica extract. Journal of dairy science, 99(1), 83 –
[24] Motelica, L., Ficai, D., Oprea, O. C., Ficai, A., Ene, V. L., Vasile, B. S., ... & Holban, A. M. (2021). Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials, 11(9), 2377.
[25] Hassani, D., Sani, I. K., & Pirsa, S. (2024). Nanocomposite film of potato starch and gum Arabic containing boron oxide nanoparticles and anise hyssop (Agastache foeniculum) essential Oil: investigation of physicochemical and antimicrobial properties. Journal of Polymers and the Environment, 32(4), 1972-1983.
[26] Dadkhah, H., Pirsa, S., Javadi, A., & Mohtarami, F. (2023). Biodegradable film of Sodium alginate film/flax seed mucilage/norbixin/tungsten oxide: investigation of color, crystalline, thermal, mechanical and antibacterial properties. pharmaceuticals, 16, 14.
[27] Hamdy, S. M., Hassan, M. G., Ahmed, R. B., & Abdelmontaleb, H. S. (2021). Impact of oat flour on some chemical, physicochemical and microstructure of processed cheese. Journal of Food Processing and Preservation, 45(9), e15761.
[28] Ai-Bedrani, D. I. J., Hasan, S. T., Altaee, A. A., & Alqotbi, A. A. (2021, November). Improving low-fat soft cheese quality properties made from reconstituted skim milk by using whey protein concentrate as a fat replacer. In IOP Conference Series: Earth and Environmental Science (Vol. 910, No. 1, p. 012040). IOP Publishing.
[29] Miloradovic, Z., Tomic, N., Kljajevic, N., Levic, S., Pavlovic, V., Blazic, M., & Miocinovic, J. (2021). High heat treatment of goat cheese milk. The effect on sensory profile, consumer acceptance and microstructure of cheese. Foods, 10(5), 1116.
[30] Nicosia, F. D., Pino, A., Maciel, G. L. R., Sanfilippo, R. R., Caggia, C., de Carvalho, A. F., & Randazzo, C. L. (2023). Technological characterization of lactic acid bacteria strains for potential use in cheese manufacture. Foods, 12(6), 1154.
[31] Gonzalez-Gonzalez, C. R., Machado, J., Correia, S., McCartney, A. L., Elmore, J. S., & Jauregi, P. (2019). Highly proteolytic bacteria from semi-ripened Chiapas cheese elicit Angiotensin-I converting enzyme inhibition and antioxidant activity. Lwt, 111, 449-456.
[32] Innosa, D., Ianni, A., Faccia, M., Martino, C., Grotta, L., Saletti, M. A., ... & Martino, G. (2020). Physical, nutritional, and sensory properties of cheese obtained from goats fed a dietary supplementation with olive leaves. Animals, 10(12), 2238.
[33] Gao, X., Zheng, Y., Zhong, Y., Zhou, R., Li, B., & Ma, M. (2023). Preparation and Characterization of Novel Chitosan Coatings to Reduce Changes in Quality Attributes and Physiochemical and Water Characteristics of Mongolian Cheese during Cold Storage. Foods, 12(14), 2731.
[34] Nottagh, S., Hesari, J., Peighambardoust, S. H., Rezaei-Mokarram, R., & Jafarizadeh-Malmiri, H. (2020). Effectiveness of edible coating based on chitosan and Natamycin on biological, physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. Biologia, 75(4), 605-611.
[35] Mezhoudi, M., Salem, A., Abdelhedi, O., Fakhfakh, N., Debeaufort, F., Jridi, M., & Zouari, N. (2022). Edible films from triggerfish gelatin and Moringa oleifera extract: Physical properties and application in wrapping ricotta cheese. Journal of Food Measurement and Characterization, 16(5), 3987-3997.
[36] Ríos-de-Benito, L. F., Escamilla-García, M., García-Almendárez, B. Amaro-Reyes, A., Di Pierro, P., & Regalado-González, C. (2021). Design of an active edible coating based on sodium caseinate, chitosan and oregano essential oil reinforced with silica particles and its application on Panela cheese. Coatings, 11(10), 1212
[37] Nemati, V., Hashempour-Baltork, F., Sadat Gharavi-Nakhjavani, M., Feizollahi, E., Marangoni Júnior, L., & Mirza Alizadeh, A. (2023). Application of a whey protein edible film incorporated with cumin essential oil in cheese preservation. Coatings, 13(8), 1470.
[38] Soleimani-Rambod, A., Zomorodi, S., Naghizadeh Raeisi, S., Khosrowshahi Asl, A., & Shahidi, S. A. (2018). The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings, 8(2), 80.
[39] Karimi Sani, I., Alizadeh, M. (2022). Packaging of ultra-filtered cheese with edible film of mash protein isolate-apple pectin nanocomposite containing microencapsulation of cardamom extract and cerium oxide nanoparticles and graphite carbon quantum dots: Investigation of its physicochemical properties. Iranian Journal of Food Science and Technology, 19(128), 235-247.
[40] Yangilar, F. (2017). Effects of natamycin edible films fortified with essential oils on the safety and quality parameters of Kashar cheese. Journal of Food Safety, 37(2), e12306.
[41] Papadopoulou, O. S., Argyri, A. A., Bikouli, V. C., Lambrinea, E., & Chorianopoulos, N. (2022). Evaluating the quality of cheese slices packaged with Na-alginate edible films supplemented with functional lactic acid bacteria cultures after high-pressure processing. Foods, 11(18), 2855.
[42] El-Sisi, A. S., Gapr, A. M., & Kamaly, K. M. (2015). Use of chitosan as an edible coating in RAS cheese. Biolife, 3(2), 564-570.
[43] Özer, B., Hayaloglu, A. A., Yaman, H., Gürsoy, A., & Şener, L. (2013). Simultaneous use of transglutaminase and rennet in white-brined cheese production. International dairy journal, 33(2), 129-134.
[44] Sardiñas-Valdés, M., García-Galindo, H. S., Chay-Canul, A. J., Velázquez-Martínez, J. R., Hernández-Becerra, J. A., & Ochoa-Flores, A. A. (2021). Ripening changes of the chemical composition, proteolysis, and lipolysis of a hair sheep milk Mexican Manchego-style cheese: effect of nano-emulsified curcumin. Foods, 10(7), 1579.
[45] Muhammad Jamel, M., Somaya Khalaf, B., & Muhammad Yaqoub, A. (2023). Evaluate the effect of using a whey protein membrane loaded with zinc nanoparticles, lactoferrin and neptomycin on microbial growth in laboratory-made soft white cheese. Medical & Clinical Research 8 (5), 01, 8.
[46] Kouser, F., Kumar, S., Bhat, H. F., Hassoun, A., Bekhit, A. E. D. A., & Bhat, Z. F. (2023). Aloe barbadensis based bioactive edible film improved lipid stability and microbial quality of the cheese. Foods, 12(2), 229.
[47] Dakheel, M. J., & Jasim, H. N. (2023). Effect of the gelatin mixed with titanium dioxide nanoparticles as active packaging on bacterial growth and some characteristics of refrigerated chicken meat. Tikrit Journal of Veterinary Sciences, 23(1), 8-21.
[48] Pluta-Kubica, A., Jamróz, E., Khachatryan, G., Florkiewicz, A., & Kopel, P. (2021). Application of furcellaran nanocomposite film as packaging of cheese. Polymers, 13(9), 1428.
[49] Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies, 48, 25-32.