بسته‌بندی پنیر فراپالایش با فیلم نانوکامپوزیت بر پایه موسیلاژ دانه چیا حاوی عصاره زرشک و نانو ذرات اکسید قلع و بررسی ویژگی‌های فیزیکوشیمیایی

نویسندگان
دانشگاه ارومیه
چکیده
در این پژوهش، ویژگی‌های فیزیکوشیمیایی و میکروبی پنیر فراپالایش بسته‌بندی‌شده با فیلم‌های نانوکامپوزیت زیست‌تخریب‌پذیر بر پایه موسیلاژ دانه چیا حاوی عصاره زرشک و نانوذرات اکسید قلع بر اساس طرح مرکب مرکزی ([1]CCD)، مورد بررسی قرار گرفت. نتایج نشان داد که استفاده از فیلم‌های تولیدشده، کاهش معنی‌داری در pH و افزایش اسیدیته نمونه‌ها در طول دوره نگهداری 15 و 30 روزه ایجاد کرد. بررسی میزان رطوبت نیز نشان داد که فیلم‌های حاوی موسیلاژ چیا و ترکیبات فعال، باعث کاهش معنی‌دار رطوبت نسبت به نمونه شاهد شدند. علاوه بر این، استفاده از فیلم‌های مذکور موجب کاهش میزان لیپولیز و پروتئولیز در نمونه‌های پنیر شد که این امر به محدودیت فعالیت آنزیم‌های پروتئولیتیک و لیپولیتیک ناشی از کاهش نفوذپذیری رطوبت و افزایش غلظت نمک، نسبت داده شد. بررسی کشت میکروبی نمونه­ها، حاکی از عدم رشد کلی­فرم، کپک و مخمر در فیلم­های بهینه جهت بسته­بندی فراپالایش طی مدت زمان نگهداری بود.

تحلیل ویژگی‌های حسی نشان داد که فیلم‌های حاوی عصاره زرشک و نانوذرات اکسید قلع پذیرش کلی بهتری در رنگ، بافت و بو داشتند و از تغییرات نامطلوب در طول نگهداری جلوگیری کردند. همچنین این فیلم‌ها مقاومت مکانیکی و خواص مانع را بهبود داده و از نفوذ اکسیژن به محصول جلوگیری کردند که منجر به کاهش سرعت فساد و حفظ کیفیت محصول شد.

در نهایت، یافته‌های این تحقیق پتانسیل بالای استفاده از فیلم‌های نانوکامپوزیت زیست‌تخریب‌پذیر با ترکیبات فعال طبیعی را برای بسته‌بندی مواد غذایی به‌ویژه محصولات لبنی نشان داد. این روش نه‌تنها موجب افزایش ارزش تغذیه‌ای و ماندگاری مواد غذایی می‌شود، بلکه راه‌حلی پایدار و سازگار با محیط‌زیست برای بسته‌بندی ارائه می‌دهد.


[1] - Central Composed Design


کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of physicochemical properties of ultra-filtered cheese packaging with nanocomposite film based on chia seed mucilage containing barberry extract and tin oxide nanoparticles

نویسندگان English

Shirin Forouzan
Sajad Pirsa
Abolfazl Alirezalu
Urmia University
چکیده English

In this study, the physicochemical and microbial properties of ultra-filtrated cheese packaged with biodegradable nanocomposite films based on chia seed mucilage containing barberry extract and tin oxide nanoparticles based on the central composite design were investigated. The aim of this research was to enhance the shelf life and sensory quality of this type of cheese through the use of edible films. The results showed that using the developed films significantly reduced the pH and increased the acidity of the samples during the storage period (15 and 30 days), which was attributed to the antimicrobial activity and phenolic compounds of the barberry extract and nanoparticles. Moisture analysis also revealed that films containing chia mucilage and active compounds significantly reduced moisture compared to the control sample, which was related to the hydrophilic nature of the mucilage and its interaction with phenolic compounds. Moreover, the use of these films reduced the extent of lipolysis and proteolysis in cheese samples, attributed to the restricted activity of proteolytic and lipolytic enzymes due to reduced moisture permeability and increased salt concentration. Microbial culture of the samples indicated the absence of growth of coliforms, molds, and yeasts in the optimal films for ultrafiltration packaging during the storage period. Sensory evaluation indicated that films containing barberry extract and tin oxide nanoparticles exhibited better overall acceptance in terms of color, texture, and aroma and prevented undesirable changes during storage. Additionally, these films improved mechanical strength and barrier properties, preventing oxygen penetration into the product, which resulted in reduced spoilage rates and better preservation of product quality.

کلیدواژه‌ها English

Ultrafiltration cheese
Nanocomposite film
Chia seed mucilage
barberry extract
tin oxide nanoparticles
[1] Arfelli, F., Roguszewska, M., Torta, G., Iurlo, M., Cespi, D., Ciacci, L., & Passarini, F. (2024). Environmental impacts of food packaging: Is it all a matter of raw materials? Sustainable Production and Consumption, 49, 318-328.
[2] Acharyya, P. P., Sarma, M., & Kashyap, A. (2024). Recent advances in synthesis and bioengineering of bacterial nanocellulose composite films for green, active and intelligent food packaging. Cellulose, 31(12), 7163-7187.
[3] D’Almeida, A. P., & de Albuquerque, T. L. (2024). Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems. Processes, 12(10), 2085.
[4] Farajinejad, Z., Sani, I. K., Alizadeh, M., & Amiri, S. (2024). A review of recent advances in the photocatalytic activity of protein and polysaccharide-based nanocomposite packaging films: antimicrobial, antioxidant, mechanical, and strength properties. Journal of Polymers and the Environment, 32(8), 3437-3447.
[5] Hrnčič, M., Ivanovski, M., Cör, D., & Knez, Ž. (2019). Chia seeds. Salvia hispanica, 1-19.
[6] Enes, B. N., Moreira, L. P., Silva, B. P., Grancieri, M., Lúcio, H. G., Venâncio, V. P., ... & Martino, H. S. (2020). Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. Journal of food science, 85(2), 226-239.
[7] Orona-Tamayo, L. D., Valverde, E. M., & Paredes-Lopez, O. (2017). Chia-the new Golden seed for the 21st century: nutraceutical properties and technological uses. Chapter 17. Sustainable protein sources.
[8] Peláez, P., Orona-Tamayo, D., Montes-Hernández, S., Valverde, M. E., Paredes-López, O., & Cibrián-Jaramillo, A. (2019). Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia). Scientific reports, 9(1), 9761.
[9] Muñoz-Tébar, N., Carmona, M., Ortiz de Elguea-Culebras, G., Molina, A. and Berruga, M.I., 2022. Chia seed mucilage edible films with origanum vulgare and satureja montana essential oils: characterization and antifungal properties. Membranes, 12(2), p.213.
[10] Charles-Rodríguez, A.V., Rivera-Solís, L.L., Martins, J.T., Genisheva, Z., Robledo-Olivo, A., González-Morales, S., López-Guarin, G., Martínez-Vázquez, D.G., Vicente, A.A. and Flores-López, M.L., 2020. Edible films based on black chia (Salvia hispanica L.) seed mucilage containing Rhus microphylla fruit phenolic extract. Coatings, 10(4), p.326.
[11] Urbizo-Reyes, U., San Martin-González, M.F., Garcia-Bravo, J. and Liceaga, A.M., 2020. Development of chia seed (Salvia hispanica) mucilage films plasticized with polyol mixtures: Mechanical and barrier properties. International Journal of Biological Macromolecules, 163, pp.854-864.
[12] Nikmaram, N., Budaraju, S., Barba, F. J., Lorenzo, J. M., Cox, R. B., Mallikarjunan, K., & Roohinejad, S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat science, 145, 245-255.
[13] Salehi, B., Selamoglu, Z., Sener, B., Kilic, M., Kumar Jugran, A., de Tommasi, N., ... & C. Cho, W. (2019). Berberis plants—drifting from farm to food applications, phytotherapy, and phytopharmacology. Foods, 8(10), 522.
[14] Ivan, I. M., Olaru, O. T., Popovici, V., Chițescu, C. L., Popescu, L., Luță, E. A., ... & Gîrd, C. E. (2024). Antioxidant and Cytotoxic Properties of Berberis vulgaris (L.) Stem Bark Dry Extract. Molecules, 29(9), 2053.
[15] Polianciuc, S. I., Ciorîță, A., Soran, M. L., Lung, I., Kiss, B., Ștefan, M. G., ... & Loghin, F. (2024). Antibiotic Residues and Resistance in Three Wastewater Treatment Plants in Romania. Antibiotics, 13(8), 780.
[16] Abu-Odeh, A. M., & Talib, W. H. (2021). Middle East medicinal plants in the treatment of diabetes: a review. Molecules, 26(3), 742.
[17] Katekhong, W., Wongphan, P., Klinmalai, P., & Harnkarnsujarit, N. (2022). Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chemistry, 374, 131709
[18] Waseem, M., Rehman, W., Hussain, R., Hussain, S., Haq, S., & Anis-ur-Rehman, M. (2021). Evaluation of structural, electrical and magnetic properties of nanosized unary, binary and ternary particles of Fe 3 O 4, SnO 2 and TiO 2. Chemical Papers, 75, 2625-2638.
[19] Bibi, N., Haq, S., Rehman, W., Waseem, M., Rehman, M. U., Shah, A., ... & Rasheed, P. (2020). Low temperature fabrication of SnO2, ZnO and Zn2SnO4 nanostructures for the degradation of Rhodamine 6G: Characterization. Biointerface Res. Appl. Chem, 10, 5895-5900.
[20] Bouroutzika, E., Proikakis, S., Anagnostopoulos, A. K., Katsafadou, A. I., Fthenakis, G. C., & Tsangaris, G. T. (2021). Proteomics analysis in dairy products: cheese, a review. Applied Sciences, 11(16), 7622.
[21] Mistry, V. V., & Maubois, J. L. (2017). Application of membrane separation technology to cheese production. In Cheese (pp. 677-697). Academic Press.
[22] Soltani, M., Saremnezhad, S., Faraji, A. R., & Hayaloglu, A. A. (2022). Perspectives and recent innovations on white cheese produced by conventional methods or ultrafiltration technique. International Dairy Journal, 125, 105232.
[23] Lee, N. K., Jeewanthi, R. K. C., Park, E. H., & Paik, H. D. (2016). Physicochemical and antioxidant properties of Cheddar -type cheese fortified with Inula britannica extract. Journal of dairy science, 99(1), 83 –
[24] Motelica, L., Ficai, D., Oprea, O. C., Ficai, A., Ene, V. L., Vasile, B. S., ... & Holban, A. M. (2021). Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials, 11(9), 2377.
[25] Hassani, D., Sani, I. K., & Pirsa, S. (2024). Nanocomposite film of potato starch and gum Arabic containing boron oxide nanoparticles and anise hyssop (Agastache foeniculum) essential Oil: investigation of physicochemical and antimicrobial properties. Journal of Polymers and the Environment, 32(4), 1972-1983.
[26] Dadkhah, H., Pirsa, S., Javadi, A., & Mohtarami, F. (2023). Biodegradable film of Sodium alginate film/flax seed mucilage/norbixin/tungsten oxide: investigation of color, crystalline, thermal, mechanical and antibacterial properties. pharmaceuticals, 16, 14.
[27] Hamdy, S. M., Hassan, M. G., Ahmed, R. B., & Abdelmontaleb, H. S. (2021). Impact of oat flour on some chemical, physicochemical and microstructure of processed cheese. Journal of Food Processing and Preservation, 45(9), e15761.
[28] Ai-Bedrani, D. I. J., Hasan, S. T., Altaee, A. A., & Alqotbi, A. A. (2021, November). Improving low-fat soft cheese quality properties made from reconstituted skim milk by using whey protein concentrate as a fat replacer. In IOP Conference Series: Earth and Environmental Science (Vol. 910, No. 1, p. 012040). IOP Publishing.
[29] Miloradovic, Z., Tomic, N., Kljajevic, N., Levic, S., Pavlovic, V., Blazic, M., & Miocinovic, J. (2021). High heat treatment of goat cheese milk. The effect on sensory profile, consumer acceptance and microstructure of cheese. Foods, 10(5), 1116.
[30] Nicosia, F. D., Pino, A., Maciel, G. L. R., Sanfilippo, R. R., Caggia, C., de Carvalho, A. F., & Randazzo, C. L. (2023). Technological characterization of lactic acid bacteria strains for potential use in cheese manufacture. Foods, 12(6), 1154.
[31] Gonzalez-Gonzalez, C. R., Machado, J., Correia, S., McCartney, A. L., Elmore, J. S., & Jauregi, P. (2019). Highly proteolytic bacteria from semi-ripened Chiapas cheese elicit Angiotensin-I converting enzyme inhibition and antioxidant activity. Lwt, 111, 449-456.
[32] Innosa, D., Ianni, A., Faccia, M., Martino, C., Grotta, L., Saletti, M. A., ... & Martino, G. (2020). Physical, nutritional, and sensory properties of cheese obtained from goats fed a dietary supplementation with olive leaves. Animals, 10(12), 2238.
[33] Gao, X., Zheng, Y., Zhong, Y., Zhou, R., Li, B., & Ma, M. (2023). Preparation and Characterization of Novel Chitosan Coatings to Reduce Changes in Quality Attributes and Physiochemical and Water Characteristics of Mongolian Cheese during Cold Storage. Foods, 12(14), 2731.
[34] Nottagh, S., Hesari, J., Peighambardoust, S. H., Rezaei-Mokarram, R., & Jafarizadeh-Malmiri, H. (2020). Effectiveness of edible coating based on chitosan and Natamycin on biological, physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. Biologia, 75(4), 605-611.
[35] Mezhoudi, M., Salem, A., Abdelhedi, O., Fakhfakh, N., Debeaufort, F., Jridi, M., & Zouari, N. (2022). Edible films from triggerfish gelatin and Moringa oleifera extract: Physical properties and application in wrapping ricotta cheese. Journal of Food Measurement and Characterization, 16(5), 3987-3997.
[36] Ríos-de-Benito, L. F., Escamilla-García, M., García-Almendárez, B. Amaro-Reyes, A., Di Pierro, P., & Regalado-González, C. (2021). Design of an active edible coating based on sodium caseinate, chitosan and oregano essential oil reinforced with silica particles and its application on Panela cheese. Coatings, 11(10), 1212
[37] Nemati, V., Hashempour-Baltork, F., Sadat Gharavi-Nakhjavani, M., Feizollahi, E., Marangoni Júnior, L., & Mirza Alizadeh, A. (2023). Application of a whey protein edible film incorporated with cumin essential oil in cheese preservation. Coatings, 13(8), 1470.
[38] Soleimani-Rambod, A., Zomorodi, S., Naghizadeh Raeisi, S., Khosrowshahi Asl, A., & Shahidi, S. A. (2018). The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings, 8(2), 80.
[39] Karimi Sani, I., Alizadeh, M. (2022). Packaging of ultra-filtered cheese with edible film of mash protein isolate-apple pectin nanocomposite containing microencapsulation of cardamom extract and cerium oxide nanoparticles and graphite carbon quantum dots: Investigation of its physicochemical properties. Iranian Journal of Food Science and Technology, 19(128), 235-247.
[40] Yangilar, F. (2017). Effects of natamycin edible films fortified with essential oils on the safety and quality parameters of Kashar cheese. Journal of Food Safety, 37(2), e12306.
[41] Papadopoulou, O. S., Argyri, A. A., Bikouli, V. C., Lambrinea, E., & Chorianopoulos, N. (2022). Evaluating the quality of cheese slices packaged with Na-alginate edible films supplemented with functional lactic acid bacteria cultures after high-pressure processing. Foods, 11(18), 2855.
[42] El-Sisi, A. S., Gapr, A. M., & Kamaly, K. M. (2015). Use of chitosan as an edible coating in RAS cheese. Biolife, 3(2), 564-570.
[43] Özer, B., Hayaloglu, A. A., Yaman, H., Gürsoy, A., & Şener, L. (2013). Simultaneous use of transglutaminase and rennet in white-brined cheese production. International dairy journal, 33(2), 129-134.
[44] Sardiñas-Valdés, M., García-Galindo, H. S., Chay-Canul, A. J., Velázquez-Martínez, J. R., Hernández-Becerra, J. A., & Ochoa-Flores, A. A. (2021). Ripening changes of the chemical composition, proteolysis, and lipolysis of a hair sheep milk Mexican Manchego-style cheese: effect of nano-emulsified curcumin. Foods, 10(7), 1579.
[45] Muhammad Jamel, M., Somaya Khalaf, B., & Muhammad Yaqoub, A. (2023). Evaluate the effect of using a whey protein membrane loaded with zinc nanoparticles, lactoferrin and neptomycin on microbial growth in laboratory-made soft white cheese. Medical & Clinical Research 8 (5), 01, 8.
[46] Kouser, F., Kumar, S., Bhat, H. F., Hassoun, A., Bekhit, A. E. D. A., & Bhat, Z. F. (2023). Aloe barbadensis based bioactive edible film improved lipid stability and microbial quality of the cheese. Foods, 12(2), 229.
[47] Dakheel, M. J., & Jasim, H. N. (2023). Effect of the gelatin mixed with titanium dioxide nanoparticles as active packaging on bacterial growth and some characteristics of refrigerated chicken meat. Tikrit Journal of Veterinary Sciences, 23(1), 8-21.
[48] Pluta-Kubica, A., Jamróz, E., Khachatryan, G., Florkiewicz, A., & Kopel, P. (2021). Application of furcellaran nanocomposite film as packaging of cheese. Polymers, 13(9), 1428.
[49] Mushtaq, M., Gani, A., Gani, A., Punoo, H. A., & Masoodi, F. A. (2018). Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innovative Food Science & Emerging Technologies, 48, 25-32.