چالش‌های تولید، کیفیت تغذیه‌ای و چشم‌انداز بازار مصرف گوشت مرغ بدون آنتی‌بیوتیک (سبز)

نویسنده
گروه کشاورزی، واحد سوادکوه، دانشگاه آزاد اسلامی، سوادکوه، ایران
چکیده
ترکیبات شیمیایی و قیمت مناسب گوشت مرغ، آن را به یکی از بهترین منابع تأمین پروتئین حیوانی تبدیل کرده است. استفاده از آنتی­بیوتیک در طیور موجب تجمع بقایای آن در گوشت و متعاقباً مقاومت آنتی­بیوتیکی شده است. تولید گوشت بدون آنتی­بیوتیک (سبز) در جهت فائق آمدن بر این معضل توسعه یافته است. با جستجو در پایگاه­های اطلاعاتی بین­المللی و داخلی، نتایج و دستاوردهای ارائه شده در اسناد علمی مختلف مورد استفاده قرار گرفته و مرور شده است. نتایج بررسی­ها نشان داد؛ مقاومت آنتی­بیوتکی به­عنوان یکی از نگرانی­های عمده سلامت عمومی جهانی، در کشورمان نیز موضوع حائز اهمیتی است. رویکرد سلامت یکپارچه، شامل پیوستگی موضوع سلامت انسان، سلامت حیوانات و محیط­زیست، برای مقابله با چالش­های بهداشتی پیچیده مانند مقاومت آنتی­بیوتیکی مورد تاکید قرار گرفته است. تولید گوشت بدون آنتی­بیوتیک با چالش­هایی همراه است که موجب افزایش هزینه­های تولید آن شده است. در عین حال گوشت سبز واجد ویژگی­های تغذیه­ای و بهداشتی مطلوب­تری نسبت به نوع معمولی بوده و در صورت افزایش آگاهی­های عمومی، شبکه توزیع و عرضه مناسب و به­خصوص قیمت متعادل می­تواند در الویت انتخاب مصرف­کنندگان قرار گیرد. نتیجه اینکه با پذیرش اصول مفهوم سلامت یکپارچه می­توان تأثیر مقاومت آنتی­بیوتیکی را کاهش داد و از طریق استفاده مسئولانه از آنتی­بیوتیک از یک­سو و تداوم تحقیق و توسعه جهت دستیابی به جایگزین­های مؤثر و ایمن، از اثربخشی آنتی­بیوتیک­ها محافظت کرد و آینده سالم­تری را برای انسان­ها، حیوانات و محیط زیست تضمین کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production challenges, nutritional quality, consumer market outlook of Antibiotic-free (Green) chicken meat

نویسنده English

dariush khademi shurmasti
Department of Agriculture, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran
چکیده English

The chemical composition and reasonable price of chicken meat have made it one of the best sources of animal protein. The use of antibiotics in poultry has caused the accumulation of its residues in the meat and then antibiotic resistance subsequently. To overcome this problem, therefore, antibiotic-free (green) meat production has been developed. By searching international and internal databases, the results and achievements presented in various scientific documents have been widely reviewed. Reviewed results showed that antibiotic resistance, as one of the major global public health concerns, is also an important problem in our country. The “One Health” approach, including the connection of human health, animal health and the environment, has been emphasized to deal with complex health challenges such as antibiotic resistance. Antibiotic-free meat production is associated with challenges that have increased its production costs. At the same time, green meat has better nutritional and healthy properties than normal ones, and if public awareness increases, a suitable distribution and supply network, and especially a balanced price, can become a priority in consumer choice. In conclusion, by accepting the principles of the concept of One Health, the effect of antibiotic resistance can be reduced, as well as the responsible use of antibiotics, and the ongoing research and development to achieve effective and safe alternatives, the effectiveness of antibiotics protected, and a healthier future will ensure for humans, animals and the environment.

کلیدواژه‌ها English

Public Health
Meat Quality
Green chicken
Antibiotic resistance
Enivironment
[1] Rossi, R., Vizzarri, F., Ratti, S. and Corino, C. 2022. Poultry meat quality in antibiotic-free production has improved by natural extract supplement. Animals, 12 (19), 2599. DOI: 10.3390/ani12192599
[2] Tahamtani, F. M., Pedersen, I. J., Toinon, C. and Riber, A. B. 2018. Effects of environmental complexity on fearfulness and learning ability in fast growing broiler chickens. Applied Animal Behaviour Science, 207, 49-56. https://doi.org/10.1016/j.applanim.2018.04.005
[3] Tollefson, L. and Miller, M. A. 2000. Antibiotic use in food animals: Controlling the human health impact. Journal of AOAC International, 83, 245-254.
[4] Gaskins, H., Collier, C. and Anderson, D. 2020. Antibiotics as growth promotants: Mode of action. Animal Biotechnoly, 13, 29-42. DOI: 10.1081/ABIO-120005768
[5] Patel, T., T. Marmulak, R. Gehring, M. Pitesky, M. O. Clapham and Tell, L. A. 2018. Drug residues in poultry meat: A literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. Journal of veterinary pharmacology and therapeutics 41: 761-789. DOI: 10.1111/jvp.12700
[6] Diaz-Sanchez, S., Moscoso, S., Solís de los Santos, F., Andino, A. and Hanning, I. 2015. Antibiotic use in poultry; A driving force for organic poultry production. Food Protection Trends, 35 (6), 440-447.
[7] Haque, Md. H., Sarker, S., Islam, Md. S., Islam, Md. A., Karim, Md. R., Kayesh, M. E. H., Shiddiky, M. J. A. and Anwer, M. S. 2020. Sustainable antibiotic-free broiler meat production: current trends, challenges, and possibilities in a developing country perspective. Biology, 9, 0411. DOI: 10.3390/biology9110411
[8] Owens, C., Fanatico, A., Pillai, P., Meullenet, J. and Emmert, J. 2006. Evaluation of alternative genotypes and production systems for natural and organic poultry markets in the U.S. In Proceeding of 12th European Poultry Conference (pp. 62-3). Verona, Italy.
[9] Saiful, I. K. B. M., Shiraj-Um-Mahmuda, S. and Hazzaz-Bin-Kabir, M. 2016. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. Journal of Public Health in Developing Countries, 2 (3), 276-284.
[10] Sattar, S., Hassan, M. M., Islam, S. K. M. A., Alam, M., Faruk, M. S. A., Chowdhury, S. and Saifuddin, A. K. M. (2014). Antibiotic residues in broiler and layer meat in Chittagong district of Bangladesh. Veterinary World, 7, 738-743.
[11] Vahedi, N., Motaghedi, A. and Golchin, M. 2011. Determination of antibiotic residues in industrial poultry carcass by means of F.P.T (four –plate – test) method in Mazandaran province. Journal of Food Science and Technology, 8(1): 65-72 [In Persian].
[12] D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., Froese, D., Zatula, G., Camels, F., Debruyme, R. et al. 2011. Antibiotic resistance is ancient. Nature, 477 (7365), 457-461. DOI: 10.1038/nature10388
[13] Laxminarayan, R., Van Boeckel, T. and Teillant, A. 2015. The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. OECD Food, Agriculture and Fisheries Papers, No. 78, OECD Publishing, Paris. https://doi.org/10.1787/5js64kst5wvl-en
[14] Cervantes, H.M. (2015). Antibiotic-free poultry production: Is it sustainable? Journal of Applied Poultry Research, 24 (1), 91-97. https://doi.org/10.3382/japr/pfv006
[15] Brugaletta, G., De Cesare, A., Zampiga, M., Laghi, L., Oliveri, C., Zhu, C., Manfreda, G., Syed, B., Valenzuela, L. and Sirri, F. 2020. Effects of alternative administration programs of a synbiotic supplement on broiler performance, foot pad dermatitis, caecal microbiota, and blood metabolites. Animals, 10 (3), 522. DOI: 10.3390/ani10030522
[16] Cobanoglu, F., Kucukyilmaz, K., Cinar, M., Catli, A.U. and Bintas, E. 2014. Comparing the profitability of organic and conventional broiler production. Brazilian Journal of Poultry Science, 16(4), 403-410. http://dx.doi.org/10.1590/1516-635x1604403-410
[17] Smith, J. A. 2011. Experiences with drug-free broiler production. Poultry Science, 90, 2670-2678. https://doi.org/10.3382/ps.2010-01032
[18] Applegate, T. J., Klose, V., Steiner, T., Ganner, A. and Schatzmayr, G. 2010. Probiotics and phytogenics for poultry: Myth or reality? Journal of Applied Poultry Research, 19, 194-210. https://doi.org/10.3382/japr.2010-00168
[19] Van der Sluis, W. 2000. Clostridial enteritis is an often underestimated problem. World’s Poultry Science Journal, 16, 42-43.
[20] Russell, S. M. 2003. The effect of airsacculitis on bird weights, uniformity, faecal contamination, processing errors and populations of Campylobacter spp. and E. coli. Poultry Science, 82 (8), 1326-1331. DOI: 10.1093/ps/82.8.1326
[21] Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Colomb-Cotinat, M., Kretzschmar, M.E., Devleesschauwer, B., Cecchini, M., et al. 2019. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infectious Diseases, 19 (1), 56-66. DOI: 10.1016/S1473-3099(18)30605-4
[22] Tangcharoensathien, V., Sattayawutthipong, W., Kanjanapimai S., Kanpravidth, W., Browne, R. and Sommanustweechaia, A. 2017. Antimicrobial resistance: from global agenda to national strategic plan, Thailand. Bulletin of the World Health Organization, 95(8), 599-603. DOI: 10.2471/BLT.16.179648
[23] Cella, E., Giovanetti, M., Benedetti, F., Scarpa, F., Johnston, C., Borsetti, A., Ceccarelli, G., Azarian, T., Zella, D. and Ciccozzi, M. 2023. Joining forces against antibiotic resistance: the One Health solution. Pathogens, 12 (9), 1074. DOI: 10.3390/pathogens12091074
[24] Mohammadzadeh, M., Ghasemian Roudsari, F., Hassani, A. and Zamani, A. 2022. Veterinary antibiotics, released in the environment and its impact on soil, plant and human health. Human and Environment, 60, 37-61 [In Persian].
[25] Landers, T. F., Cohen, B., Wittum, T. E. and Larson, E. L. 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Report, 127, 4-22. DOI: 10.1177/003335491212700103
[26] De Cesare, A., Oliveri, C., Lucchi, A., Savini, F., Manfreda, G. and Sala, C. 2022. Pilot study on poultry meat from antibiotic-free and conventional farms: can metagenomics detect any difference? Foods, 11 (3), 249. DOI: 10.3390/foods11030249
[27] Bywater, R. J. and Casewell M. W. 2000. An assessment of the impact of antibiotic resistance in different bacterial species and of the contribution of animal sources to resistance in human infections. J. Antimicrob. Journal of Antimicrobial Chemotherpy, 46 (6), 1052. DOI: 10.1093/oxfordjournals.jac.a020886
[28] Bakhshi, S., Ghazvini, K., Beheshti Namdar, A., Ahadi, M. and Sheykhi M. 2017. Review of antibiotic resistance of Helicobacter pylori in Iran and the world. Medical Journal of Mashhad University of Medical Sciences, 60 (4), 648-661 [In Persian].
[29] Hasanvand, F., Talebi Bezmin Abadi, A. and Mohabati Mobarez, A. 2019. The prevalence of antibiotic-resistant helicobacter pylori: a literature review. Govaresh, 23, 213-224 [In Persian].
[30] Nouri, S. and Nodargah, M. 2019. High tetracycline resistance alarm in Iran. Journal of Food Microbiology, 6(4): 74-87 [In Persian].
[31] Golsha, R., Kazemnejad, V., Barzegar, A., Besharat, S. and Ghasemi Kebria, F. 2013. Antibiotic resistance pattern of Gram-negative bacteria in Gorgan. Medical Laboratory Journal, 7 (5): 71-74 [In Persian].
[32] Sulis, G., Sayood, S. and Gandra, S. 2022. Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Review of Anti-infective Therapy, 20 (2), 147-160. DOI: 10.1080/14787210.2021.1951705
[33] Allel, K., Day, L., Hamilton, A., Lin, L., Furuya-Kanamori, L., Moore, C.E., Van Boeckel, T., Laxminarayan, R. and Yakob, L. 2023. Global antimicrobial-resistance drivers: An ecological country-level study at the human-animal interface. Lancet Planetary Health, 7, e291–e303. DOI: 10.1016/S2542-5196(23)00026-8
[34] Velazquez-Meza, M. E., Galarde-López, M., Carrillo-Quiróz, B. and Alpuche-Aranda, C. M. 2022. Antimicrobial resistance: One Health approach. Veterinary World, 15 (3), 743-749. DOI: 10.14202/vetworld.2022.743-749
[35] Rokni, N., Kamkar, A., Salehzadeh, F. and Madani, R. 2007. Study of enrofloxacin residue in broiler tissues by HPLC. Journal of Food Science and Technology, 4(2): 11-16 [In Persian].
[36] Zarean Baniasadi, F., Ahmadi, M., Rokni, N., Golestan, L. and Shahidi Yasaghi, A. 2019. Evaluation of four common antibiotic classes in the muscle and liver of chickens slaughtered Tehran by LC-MS/MS. Veterinary Researches & Biological Products. 124: 55-63. DOI: 10.22092/vj.2019.125604.1565
[37] Boeckel, T.P.V., Glennon, E.E., Chen, D., Gilbert, M., Robinson, T.P., Grenfell, B.T., Levin, S.A., Bonhoeffer, S. and Laxminarayan, R. 2017. Reducing antimicrobial use in food animals. Science, 357, 1350–1352. DOI: 10.1126/science.aao1495
[38] Freivogel, C. and Visschers, V. H. M. 2020. Understanding the underlying psychosocial determinants of safe food handling among consumers to mitigate the transmission risk of antimicrobial-resistant bacteria. International Journal of Environmental Research and Public Health, 17, 2546. DOI: 10.3390/ijerph17072546
[39] Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. and Van Boeckel, T. P. 2020. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9, 918. DOI: 10.3390/antibiotics9120918
[40] Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S.A., Goossens, H. and Laxminarayan, R. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceeding of the National Academy of Sciences USA, 115 (15), E3463-E3470. DOI: 10.1073/pnas.1717295115
[41] Aalipour, F., Mirlohi, M. and Jalali, M. 2013. The study of the antibiotic consumption pattern in the production of animal-originated food in Iran and its comparison to other countries. Journal of Health System Research, Nutrition supplement: 1572-1584 [In Persian].
[42] Michalczuk, M., Zdanowska-Sasiadek, Z., Damaziak, K. and Niemiec, J. 2017. Influence of indoor and outdoor systems on meat quality of slow-growing chickens. CyTA -Journal of Food, 15, 15-20. DOI: 10.1080/19476337.2016.1196246
[43] Baéza, E., Guillier, L. and Petracci, M. 2022. Review: Production factors affecting poultry carcass and meat quality attributes. Animal, 16, 100333. https://doi.org/10.1016/j.animal.2021.100331
[44] Javadi, A., Mirzaei, H., Khatibi, S.A. and Manaf Hosseini, A. 2011. Experimental study of the effect of grilling, microwave and boiling cooking methods on enrofloxacin residues in poultry edible tissues. Veterinary Clinical Pathology, 5(3): 1259-1265 [In Persian].
[45] Baéza, E., Arnould, C., Jlali, M., Chartrin, P., Gigaud, V., Mercerand, F., Durand, C., Méteau, K., Le Bihan-Duval, E. and Berri, C. 2012. Influence of increasing slaughter age of chickens on meat quality, welfare, and technical and economic results. Journal of Animal Science, 90, 2003–2013. DOI: 10.2527/jas.2011-4192
[46] Baéza, E., Salichon, M.R., Marche, G., Wacrenier, N., Dominguez, B. and Culioli, J. 2000. Effects of age and sex on the structural, chemical and technological characteristics of mule duck meat. British Poultry Science, 41 (3), 300-307. DOI: 10.1080/713654934
[47] Giampietro-Ganeco, A., Boiago, M.M., Mello, J. L. M., De Souza, R. A., Ferrari, F. B., De Souza, P. A. and Borba, H. 2020. Lipid Assessment, cholesterol and fatty acid profile of meat from broilers raised in four different rearing systems. Annals of the Brazilian Academy of Science, 92(Suppl. 1), e20190649 DOI: 10.1590/0001-37652020201
[48] FAO. (2024). Food Outlook – Biannual report on global food markets. Food Outlook, June 2024. Rome. https://doi.org/10.4060/cd1158en
[49] Talebi, P., Omidi Najafabadi, M. and Lashgarar, F. 2021. The impact of governmental supports on green poultry marketing development. Journal of Agricultural Economic and Development, 35 (3), 245-258. DOI: 10.22067/JEAD.2021.69884.103
[50] Mohammadi, H., Saghaian, S. and Boccia, F. 2023. Antibiotic-free poultry meat consumption and its determinants. Foods, 12, 1776. https://doi.org/10.3390/ foods12091776
[51] Khademi Shurmasti, D. 2022. Cellulose derivatives as edible film and coating; Characteristics and effect on the quality and shelf life of animal, poultry and aquatic products. Iranian Journal of Food Science and Technology, 18(121): 349-364. DOI: 10.52547/fsct.18.121.28 [In Persian].
[52] Khademi Shurmasti, D., Yamini, F. and Badakhshan, N. 2021. Effect of Satureja hortensis extract and polysaccharide-based active bio-composite coating on broiler fillet shelf life during refrigerated storage (4±1oC). Iranian Journal of Food Science and Technology, 18(115): 271-281. DOI: 10.29252/fsct.18.06.22 [In Persian].
[53] Mardani Kiasari, M. and Khademi Shurmasti, D. 2020. Effect of lemon grass (Cymbopogon citratus) extract and nano clay in nanocomposite coating on the physicochemical and microbial properties of chicken fillets during refrigerated storage. Iranian Journal of Food Science and Technology, 17(106): 13-21. DOI 10.29252/fsct.17.09.02 [In Persian].
[54] Sandoughi, A. Yadavar, H., Raheli H. and Haring A. M. 2019. Identifying and explaining the driving factors of organic agricultural products market development. Iranian Journal of Agricultural Economics and Development Research, 50-2(2), 295-310 [In Persian].
[55] Aghasafari, H. and Karbasi, A. R. 2021. Factors affecting consumers' preference for chicken meat with sustainability labels. Agricultural Economics Research Journal, 13 (2), 197-216 [In Persian].