خواص فیزیکوشیمیایی و عملکردی پلی ساکاریدهای صمغ-رزین مقل

نویسندگان
گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان
چکیده
مقل یک اولئو صمغ رزینی است که در اثر خراش پوست گیاه Commiphora wightii ترشح می شود. هدف از این تحقیق بررسی خصوصیات فیزیکوشیمیایی و عملکردی صمغ گیاه مقل می باشد. خصوصیات عملکردی و فیزیکوشیمیایی صمغ مقل مثل میزان پروتئین، کربوهیدرات کل، رنگ، ویسکوزیته محلول، پتانسیل زتا، حلالیت، ظرفیت جذب آب، ظرفیت جذب روغن، خصوصیت کف کنندگی و امولسیون کنندگی صمغ بررسی شد. ساختار شیمیایی صمغ به روش های طیف سنجی مادون قرمز، کروماتوگرافی مایع با کارایی بالا و رزونانس مغناطیس هسته ای تک بعدی آنالیز گردید. میزان پروتئین صمغ 15/8 درصد و میزان کربوهیدرات آن 09/61 درصد بدست آمد. بررسی ویسکوزیته محلول صمغ مقل، رفتار رقیق شونده با برش را نشان داد. صمغ استخراج شده دارای پتانسیل زتای 26- میلی ولت بود. حلالیت صمغ در سه دمای 30، 60 و 90 درجه سلسیوس بررسی شد. ظرفیت جذب آب نیز حدود 78/3 گرم آب در یک گرم صمغ محاسبه گردید. قابلیت تشکیل کف صمغ03/87 درصد و پایداری کف آن 83/65 درصد اندازه گیری شد. میزان جذب روغن محاسبه شده برای صمغ مقل 33/2 گرم روغن در یک گرم صمغ بود. پس از بررسی ویژگی های امولسیونی صمغ مقل مشاهده شد که این صمغ توانایی امولسیون کنندگی خوبی در غلظت های5/0، 1، 5/1، 2و3 درصد دارد و همچنین از پایداری حرارتی و انجمادی تا حدود بالایی برخوردار است. آنالیزهای انجام شده بر روی خصوصیات ساختاری صمغ مقل وجود واحدهای قندی مانند آرابینوز، رامنوز، فروکتوز، گلوکورونیک اسید وگالاکتورونیک اسید را نشان می­داد. وجود گروه هیدروکسیل در طیف FTIR موید حضور گلوکورونیک اسید، گالاکتورونیک اسید، اسیدهای کربوکسیلیک، الکل قندها و گروه های گلایکوزیدی در پروفایل ترکیبات موجود در نمونه بود. ارزیابی پروفایل مونوساکاریدی با HPLC در نمونه صمغ بیانگر وجود گلوکز به عنوان یک هگزوز با حداکثر مقدار بود و پس از آن نیز مانوز و رامنوز قرار داشتند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical and functional properties of Commiphora wightii gum-resin polysaccharides

نویسندگان English

Saeedeh Roostaiy
Hajar Shekarchizadeh
Milad Fathi
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده English

Mukul gum is an oleo-gum-resin secreted after scratching the bark of Commiphora wightii. This study aims to investigate the physicochemical and functional properties of mukul gum. The functional and physicochemical properties of the gum, including protein content, total carbohydrates, color, solution viscosity, zeta potential, solubility, water absorption capacity, oil absorption capacity, foaming ability, and emulsifying properties, were evaluated. The chemical structure of the gum was analyzed using infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and one-dimensional nuclear magnetic resonance (NMR) spectroscopy. The protein content of the gum was determined to be 8.15%, while its carbohydrate content was found to be 61.09%. The viscosity analysis of the gum solution indicated a shear-thinning behavior. The extracted gum exhibited a zeta potential of -26 mV. The gum’s solubility was investigated at 30, 60, and 90 °C. The WAC value was 3.78 g of water in one gram of gum. The gum’s ability to form a foam was 87.03% and the foam stability was calculated to be 65.83%. Likewise, the OAC value for the extracted gum was 2.33 g of oil in one gram of gum. Further analyses confirmed the gum’s acceptable emulsifying capacity in concentrations of 0.5, 1, 1.5, 2, and 3%, as well as its relatively high thermal stability. Structural analyses indicated the presence of sugars (e.g., arabinose, rhamnose, fructose, glucuronic acid, and galacturonic acid) in the gum. In addition, FTIR results confirmed the presence of hydroxyl groups and, particularly, the presence of glucuronic acid, galacturonic acid, carboxylic acids, sugar alcohols, and glycosidic groups in the profile of the gum’s compounds. Ultimately, HPLC analyses of the monosaccharide profile demonstrated a high content of glucose (as a hexose) and some concentrations of mannose and rhamnose.

کلیدواژه‌ها English

Emulsion
Foaming ability
Solubility
Functional properties
[1] Salahi M., Razavi, S. M. A. and Amiri, M. S. 2021. Optimization of hydrocolloid extraction from serish root (eremurus luteus) using response surface method and examining physicochemical characterization of the optimized sample. Iran. J. Food. Sci. Technol. 112(18):153-168.
[2] Hesarinejad, M. A., Koocheki, A. and Razavi, S. M. A. 2014. Dynamic rheological properties of Lepidium perfoliatum seed gum: Effect of concentration, temperature and heating/cooling rate. Food Hydrocoll. 35: 583-589.
[3] Saini, L. S., Rajput, S. K., Rathore, T. R. and Tomar, U. K. 2018. Non-destructive harvesting of oleo-gum resin in Commiphora wightii (Arnott) Bhandari—a critically endangered plant. Ind Crops Prod. 113: 259-265.
[4] Bhatia, A., Bharti, S. K., Tripathi, T., Mishra, A., Sidhu, O. P., Roy, R. and Nautiyal, C. S. 2015. Metabolic profiling of Commiphora wightii (guggul) reveals a potential source for pharmaceuticals and nutraceuticals. Phytochemistry. 110: 29-36.
[5] Simas-Tosin, F., Barraza, R., Petkowicz, C., Silveira, J., Sassaki, G., Santos, E., Gorin, P. and Iacomini, M. 2010. Rheological and structural characteristics of peach tree gum exudate. Food Hydrocoll. 24: 486-493.
[6] Vani, P., Sreekanth, D., Manjula, P., Keerthi, B., Kistamma, S., Mohan, B., Reddy, A. N. and Mohan, C. 2016. Phytochemical investigation, antibacterial activity and antioxidant activity of the endangered tree Commiphora wightii (Arn.) Bhandari. J. Pharmacogn. Phytochem. 5: 21.
[7] Chaudhari, B. and Annapure, U. 2021. Rheological, Physicochemical, and Spectroscopic characterizations of Limonia acidissima L. gum exudate with an application in extrusion processing. Carbohydr. Polym. Technol. Appl. 2: 100020.
[8]. López-Franco, Y., Cervantes-Montaño, C., Martínez-Robinson, K., Lizardi-Mendoza, J. and Robles-Ozuna, L. 2013. Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.). Food Hydrocoll. 30: 656-660.
[9] Hesarinejad, M. A., Razavi, S. M. and Koocheki, A. 2015. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Boil. Macromol. 81: 418-426.
[10] Chaudhari, B. B. and Annapure, U. S. 2020. Physiochemical and rheological characterization of pithecellobium dulce (Roxb.) benth gum exudate as a potential wall material for the encapsulation of rosemary oil. Carbohydr. Polym. Technol. Appl. 1: 100005.
[11] Vieira, J., Mantovani, R., Raposo, M., Coimbra, M., Vicente, A. and Cunha, R. 2019. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 213: 217-227.
[12] Arlington, V. 1980. Official methods of analysis of the association of official analytical chemists. AOAC Inc.: Washington, DC, USA.
[13] Betancur-Ancona, D., López-Luna, J. and Chel-Guerrero, L. 2003. Comparison of the chemical composition and functional properties of Phaseolus lunatus prime and tailing starches. Food Chem. 82: 217-225.
[14] Singh, U. 2001. Functional properties of grain legume flours. J. Food Sci. Technol. (Mysore). 38: 191-199.
[15] Thanatcha, R. and Pranee, A. 2011. Extraction and characterization of mucilage in Ziziphus mauritiana Lam. Inte. Food Res. J. 18: 201-212.
[16] Golkar, A. 2013. Investigating the emulsifying properties of beta-lactoglobulin-Persian gum covalent and non-covalent complexes. M.Sc Thesis, Faculty of Agriculture, Isfahan University of Technology. (In Persian).
[17] Busch, V. M., Kolender, A. A., Santagapita, P. R. and Buera, M. P. 2015. Vinal gum, a galactomannan from Prosopis ruscifolia seeds: Physicochemical characterization. Food Hydrocoll. 51: 495-502.
[18] Bashir, M. and Haripriya, S. 2016. Assessment of physical and structural characteristics of almond gum. Int. J. Biol. Macromole. 93: 476-482.
[19] Saeidy, S., Nasirpour, A., Djelveh, G., Ursu, A.-V., Marcati, A., Gardarin, C., Laroche, C., Delattre, C., Pierre, G. and Keramat, J. 2018. Rheological and functional properties of asafoetida gum. Int. J. Biol. Macromol. 118: 1168-1173.
[20] Wang, Q. and Cui, S. W. 2005. Understanding the physical properties of food polysaccharides. Food carbohydrates: chemistry, physical properties, and applications. 162-214.
[21] Harnsilawat, T., Pongsawatmanit, R. and McClements, D. J. 2006. Stabilization of model beverage cloud emulsions using protein− polysaccharide electrostatic complexes formed at the oil− water interface. J. Agric. food chem. 54: 5540-5547.
[22] Golkar, A., Nasirpour, A., Keramat, J. and Desobry, S. 2015. Emulsifying properties of Angum gum (Amygdalus scoparia Spach) conjugated to β-lactoglobulin through Maillard-type reaction. Int. J. Food Prop. 18: 2042-2055.
[23] Brummer, Y., Cui, W. and Wang, Q. 2003. Extraction, purification and physicochemical characterization of fenugreek gum. Food hydrocoll. 17: 229-236.
[24] Cui, S. W. 2005. "Food carbohydrates: chemistry, physical properties, and applications," CRC press.
[25] Anderson, D. and Weiping, W. 1991. The characterization of gum arabic (Acacia Senegal) samples from Uganda. Food Hydrocoll. 5: 297-306.
[26] Khalesi, H., Alizadeh, M. and Rezazad-Bari, M. 2012. Investigating the physicochemical and functional characteristics of zedu gum exudated from Amygdalus scoparia Spach plant in the forest area of Fars province. Iran. Food Sci. Technol. Res. J. 8(3): 317-326.
[27] Hassanpour Amnieh, A., Jooyandeh, H., Nasehi, B. and Hojjati, M. 2018. Investigation on physicochemical and rheological properties of malva leaves gum (Malva neglecta). J. Food Technol. Nutr. 15: 19-30.
[28] Amini-Rastabi, J. 2016. Investigating the effect of drying temperature, heat treatment and the concentration of gum solution entering the dryer on the functional characteristics of Persian gum. M.Sc Thesis, Faculty of Agriculture, Isfahan University of Technology. (In Persian).
[29] Salehi, A. 2017. Extraction and determination of physicochemical and functional properties of mucilage (carbohydrate) obtained from cactus fruit. M.Sc Thesis, Faculty of Agriculture and Natural Resources, University of Tehran. (In Persian).
[30] Niknam, R. 2017. Investigating factors affecting the characteristics, physicochemical and properties of films based on castor bean gum. M.Sc Thesis, Faculty of Agriculture, University of Tabriz. (In Persian).
[31] Jafari, S. M., Assadpoor, E., He, Y. and Bhandari, B. 2008. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocollo. 22: 1191-1202.
[32] Tadayoni, M., Sheikh-Zeinoddin, M. and Soleimanian-Zad, S. 2015. Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int. J. Biol. Macromol. 72: 179-184.