شبیه‌سازی محتوای رطوبت و جذب روغن در فرآیند سرخ کردن ناپیوسته بادمجان

نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد تبریز، دانشگاه آزاد اسالمی، تبریز، ایران.
2 دانشیار گروه مهندسی علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسالمی، تبریز.
3 دانش آموخته دکترای مهندسی علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسالمی، تبریز.
4 دانشجوی دکتری
چکیده
بادمجان به­دلیل میزان رطوبت بالا و نرم شدن بافت طی مدت زمان نگهداری، عمر ماندگاری کوتاهی دارد. بنابراین استفاده از روش­های مناسب برای فرآوری، افزایش زمان نگهداری و حفظ ارزش تغذیه‌ای آن ضروری می­باشد. در واقع درک انتقال حرارت و جرم در طی سرخ کردن می‌تواند برای بهینه سازی و کنترل هرچه بیشتر فرایند مفید باشد. در این پژوهش اثر سرخ کردن در دماهای 160، 180 و 200 درجه سانتی­گراد به مدت­های 20، 36، 124 و 200 ثانیه برمحتوای رطوبتی، محتوای روغن، سینتیک انتقال رطوبت و روغن و تخمین ضریب انتقال جابه جایی انجام گرفت. نتایج نشان‌داد نمونه سرخ شده در دمای 160 درجه سانتی­گراد به مدت 124 ثانیه،کمترین میزان جذب روغن را دارند. همچنین مشخص شد با کاهش دما و زمان سرخ‌کردن محتوای روغن نمونه­ها کمتر می‌گردد. به‌علاوه، مدل­های تجربی، به خوبی داده­های آزمایشی را برازش نمودند. علاوه بر این، نتایج نشان‌داد که نمونه سرخ شده به مدت 200 ثانیه در دمای 200 درجه­ی سانتی­گراد کمترین میزان نسبت محتوای رطوبت را دارد. ﻫﻤﺎنﻃﻮر ﮐﻪ ﻣﺸﺨﺺ اﺳﺖ ﺑﺎ اﻓـﺰایش دﻣـﺎی ﺳﺮخ ﮐﺮدن ﺛﺎﺑﺖ سینتیک ﮐﺎﻫﺶ رطوبت افزایش یافت ﮐﻪ ﻧﺸﺎن‌دﻫﻨـﺪه ﺳﺮﻋﺖ ﺧﺮوج رﻃﻮﺑﺖ بیشتر از ﻣﺤﺼـﻮل در دﻣـﺎی ﺑـﺎﻻ ﻧﺴـﺒﺖ ﺑـﻪ دﻣﺎﻫﺎی پایین‌تر بود. همچنین، افزایش زمان و دمای سرخ کردن موجب کاهش محتوی رطوبت نمونه­ها گردید. ضریب انتقال حرارت جابجایی در زمان‌های اولیه فرآیند بیشتر بوده و با سپری شدن زمان سرخ کردن این عدد نیز کاهش یافت. بیشترین مقدار h مربوط به ثانیه بیستم در دمای سرخ کردن 200 درجه سانتیگراد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Simulation of moisture content and oil absorption in the process of discontinuous frying of eggplant

نویسندگان English

Narmela Asefi 1
narmela asefi 2
Armaghan salem 3
HALEH SORIAYAY ZAFAR 4
1 Graduate, Department of Food Science and Technology, Tabriz Branch
2 Associate Professor, Department of Food Science and Technology, Ta.C., Islamic Azad University, Tabriz, Iran.
3 Ph.D. in Department of Food Science and Technology, Ta.C., Islamic Azad University, Tabriz, Iran
4 PhD
چکیده English

Abstract

Eggplant has a short shelf life due to its high moisture content and softening of the tissue during storage. Therefore, it is necessary to use appropriate methods for processing, to increase storage time and maintain its nutritional value. In fact, understanding the heat and mass transfer during frying can be useful for optimizing and controlling the process as much as possible. In this study, the effect of frying at 160, 180, and 200 ° C for 20, 36, 124, and 200 seconds on moisture content, oil content, moisture, and oil transfer kinetics, and estimation of convective heat transfer coefficient was analyzed. The results showed that the samples fried at 160 ° C for 124 seconds had the lowest oil absorption. It was also found that as the temperature and frying time decreased, the oil content of the samples also decreased. In addition, the experimental models fit the experimental data well. In addition, the results showed that the sample fried for 200 seconds at 200 ° C had the lowest moisture content ratio. It is known, increasing the frying temperature of the synthetic constant, also increases the decrease in humidity, which indicates that the rate of moisture exit of the product was higher at high temperatures than at lower temperatures. Also, increasing the frying time and temperature reduced the moisture content of the samples. The convective heat transfer coefficient is higher in the early times of the process and decreases with time as the frying time elapses. The maximum value of h was related to the twentieth seconds at a frying temperature of 200 ° C.

کلیدواژه‌ها English

Eggplant
Deep frying
Oil content
Moisture content
Heat Transfer Coefficient
[1] FAO. 2011. Food and Agriculture Organization of the United Nations.
[2] Hui, Y.H. 2006. Handbook of food science, technology, and engineering. vol.4. CRC press.
[3] Gürbüz, N., Uluişik, S., Frary, A., Frray, A., & Doğanlar, S. 2018. Health benefits and bioactive compounds of eggplant. Food Chemistry, 268, 602–610.
[4] Dueik, V., Robert, P., & Bouchon, P. 2010. Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chemistry, 119(3), 1143–1149.
[5] Mestdagh, F., Wilde, T.D., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J.M. Verhe, R., Peteghem, C.V., & Meulenaer, B.D. 2008. Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT-Food Science and Technology, 41 (9), 1648–1654.
[6] Juániz, I., Zocco, C., Mouro, V., Cid, C., & De Peña, MP. 2016. Effect of frying process on furan content in foods and assessment of furan exposure of Spanish population. LWT-Food Science and Technology, 68, 549–55.
[7] Datta, A.K. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of Food Engineering, 80 (1), 80–95.
[8] Krokida, M.K., Oreopoulou, V., Maroulis, Z.B., & Marinos-Kouris, D. 2001. Effect of osmotic dehydration pretreatment on quality of french fries. Journal of Food Engineering, 49 (4), 339–345.
[9] Alvis, A., Vélez, C., Rada-Mendoza, M., Villamiel, M., & Villada, H.S. Heat transfer coefficient during deep-fat frying. Food Control, 20 (4), 321–325.
[10] Kita, A., Lisińska, G., & Gołubowska, G. 2007. The effects of oils and frying temperatures on the texture and fat content of potato crisps. Food Chemistry, 102 (1), 1–5.
[11] Mottram, D.S., Wedzicha, B.L., & Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature, 419, 448–449.
[12] Mellema, M. 2003. Mechanism and reduction of fat uptake in deep-fat fried foods. Trends in Food Science & Technology, 14 (9), 364–373.
[13] Zyzak, D.V., Sanders, R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald, D.K., Gruber, D.C., Morsch, T.R., Strothers, M.A., Rizzi, G.P. & Villagran, M.D. 2003. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51 (16), 4782–4787.
[14] Rywotycki, R. 2003. Food frying process control system. Journal of Food Engineering, 59 (4), 339–342.
[15] Trystram, G. 2012. Modelling of food and food processes. Journal of Food Engineering, 110 (2), 269–277.
[16] Sahin, S., Sastry, S.K., & Bayindirli, L. 1999. The determination of convective heat transfer coefficient during frying. Journal of Food Engineering, 39 (3), 307–311.
[17] Sabbaghi, H., Ziaiifar, A.M., Mahoonak, A.R.S, Kashaninejad, M., & Mirzaei, H. 2015. Estimation of convective heat transfer coefficient as function of the water loss rate during frying process. Iranian Journal Food Science and Technology Research, 11 (4), 473–484.
[18] Yıldız, A., Palazoğlu, T.K., & Erdoğdu, F. 2007. Determination of heat and mass transfer parameters during frying of potato slices. Journal of Food Engineering, 79 (1), 11–17.
[19] Beyki, H., & Hamdami, N. 2014. Kinetic of Oil Uptake, Water Loss and Texture Changes During Frying of Potato Strips. Journal of Food Research (UNIVERSITY OF TABRIZ), 23 (4), 471-481.
[20] AOAC. 1995, Official methods of analysis Washington, DC: Association of Official Analytical Chemists n.d.
[21] Costa, R., & Oliveira, F. 1999. Modelling the kinetics of water loss during potato frying with a compartmental dynamic model. Journal of Food Engineering, 41 (3-4), 177–185.
[22] Baik, O.D., & Mittal, G.S. 2005. Heat and moisture transfer and shrinkage simulation of deep-fat tofu frying. Food Research International, 38 (2), 183–191.
[23] Krokida, M.K., Oreopoulou, V., Maroulis, Z.B, & Marinos-Kouris, D. 2001. Effect of pre-drying on quality of French fries. Journal of Food Engineering, 49 (4), 347–354.
[24] Romani, S., Bacchiocca, M., Rocculi, P., & Dalla Rosa, M. 2008. Effect of frying time on acrylamide content and quality aspects of French fries. European Food Research and Technology, 226, 555–560.
[25] Farkas, B.E., Singh, R.P., & Rumsey, T.R. 1996. Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29 (2), 211–226.
[26] Durán, M., Pedreschi, F., Moyano, P., & Troncoso, E. 2007. Oil partition in pre-treated potato slices during frying and cooling. Journal of Food Engineering, 81 (1), 257–265.
[27] Mohebbi, M., Fathi, M., & Shahidi, F. 2011. Genetic algorithm–artificial neural network modeling of moisture and oil content of pretreated fried mushroom. Food and Bioprocess Technology, 4, 603–609.
[28] Sabbaghi, H., Ziaiifar, A.M., & Kashaninejad, M. 2017. Analysis of heat and mass transfer during frying process of potato strips. Iranian Journal Food Science and Technology Research, 13 (2), 379–392.
[29] Lioumbas, J.S., Kostoglou, M., & Karapantsios, T.D. 2012. On the capacity of a crust–core model to describe potato deep-fat frying. Food Research International, 46 (1), 185–193.
[30] Farkas, B.E, Singh, R.P., & Rumsey, T.R. 1996. Modeling heat and mass transfer in immersion frying. II, model solution and verification. Journal of Food Engineering, 29 (2), 227–248.
[31] Ziaiifar, A.M., Courtois, F., & Trystram, G. 2010. Porosity development and its effect on oil uptake during the frying process. Journal of Food Process Engineering, 33 (2), 191–212.
[32] Moreira, R.G., Castell-Pérez, M.E., & Barrufet, M.A. 1999. Deep-Fat Frying: Fundamentals and Applications. An Aspen Publication. Inc Gaithersburg, Maryland.
[33] Sahin, S., Sastry, S.K., & Bayindirli, L. 1999. Heat transfer during frying of potato slices. LWT - Food Science and Technology, 32 (1), 19–24.
[34] Hubbard, L.J., & Farkas, B.E. 1999. Method for determining the convective heat transfer coefficient during immersion frying. Journal of Food Process Engineering, 22 (3), 201–214.