تولید پپتیدهای آنتی‌اکسیدانی از کنجاله بذر کتان: تاثیر نوع و غلظت پروتئاز، زمان هیدرولیز و پیش‌تیمار مایکروویو

نویسندگان
1 دانشجوی کارشناسی ارشد شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 استاد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استادیار گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آزادشهر
4 دانش‌آموخته دکتری شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
هر ساله در طی فرآوری محصولات کشاورزی و تولید مواد غذایی، مواد زائد و فرآورده‌های جانبی زیادی تولید می‌شوند. اکثر این محصولات فرعی دارای خواص زیست‌فعالی مانند آنتی‌اکسیدان هستند که می‌توان آن‌ها را استخراج و در تولید محصولات سلامتی بخش به ‌کار برد. در پژوهش حاضر، کنجاله بذر کتان که به عنوان محصول فرعی فرایند روغن‌گیری از بذر کتان حاصل می‌شود با استفاده از دو آنزیم تریپسین و پانکراتین با دو متغیر زمان (15-210 دقیقه) و نسبت آنزیم به سوبسترا (1-3 %) هیدرولیز شد. تاثیر پیش‌تیمار مایکروویو بر خواص آنتی‌اکسیدانی پروتئین هیدرولیزشده توسط روش سطح‌پاسخ بررسی شد. تیمار پروتئین هیدرولیزشده تولیدی با تریپسین و پیش‌تیمار مایکروویو در شرایط زمان هیدرولیز 02/84 دقیقه و نسبت آنزیم به سوبسترا 77/1 % به عنوان تیمار بهینه با بیشترین خواص آنتی‌اکسیدانی (فعالیت آنتی‌اکسیدانی کل 745/0 (جذب در 695 نانومتر)، فعالیت مهار رادیکال آزاد DPPH 35/71 % و فعالیت شلاته‌کنندگی یون آهن 12/76 %) انتخاب شد. پروتئین هیدرولیزشده بذر کتان به عنوان یک محصول زیست‌فعال با خواص آنتی‌اکسیدانی، می‌تواند به‌عنوان یک آنتی اکسیدان طبیعی در تولید محصولات سلامتی‌بخش و مکمل غذایی ورزشکاران مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of bioactive peptides from flaxseed meal: the effect of protease type and concentration, hydrolysis time, and microwave pretreatment

نویسندگان English

Faezeh Farzanfar 1
Alireza Sadeghi Mahoonak 2
Mohammad Ghorbani 2
Seyed Hossein Hosseini Qaboos 3
shima kaveh 4
1 Master's student in food chemistry, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
2 Professor, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
3 Assistant Professor, Department of Food Science and Technology, Islamic Azad University, Azadshahr branch
4 Ph.D. of Food Chemistry, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
چکیده English

Every year, during the processing of agricultural products and food production, many waste materials and by-products are produced. Most of these by-products have bioactive properties, such as antioxidants, which can be extracted to produce products with bioactive properties. In the present study, flaxseed meal, which is obtained as a byproduct of the oil extraction process from flaxseed, was hydrolyzed using two enzymes, trypsin, and pancreatin, with time (15-210 minutes) and enzyme-to-substrate ratio (1-3%) variables. The effect of microwave pretreatment on the antioxidant properties of hydrolyzed protein was investigated by the response surface methodology. Treatment of hydrolyzed protein with trypsin and microwave pretreatment in optimal hydrolysis conditions of 84.02 minutes and enzyme to substrate ratio1.77%, as the optimal treatment with the most antioxidant properties (total antioxidant activity 0.745 (absorbance at 695 nm), DPPH radical scavenging activity of 71.35% and 76.12% Fe chelating activity) were selected. As a result, flaxseed protein hydrolysate, a bioactive product with antioxidant properties, can be used as a natural antioxidant in producing health products and nutritional supplements for athletes.

کلیدواژه‌ها English

Antioxidant
Microwave pretreatment
Trypsin
flax
enzymatic hydrolysis
[1] Kaveh, S., Gholamhosseinpour, A., Hashemi, S. M. B., Jafarpour, D., Castagnini, J. M., Phimolsiripol, Y., & Barba, F. J. (2023). Recent advances in ultrasound application in fermented and non‐fermented dairy products: antibacterial and bi
[2] oactive properties. International Journal of Food Science & Technology, 58(7), 3591-3607.
[3] Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M. Jafari, M & Sarabandi, K. (2019). Optimization of Production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of food science and technology (Iran), 15(84), 75-88.
[4] Mueed, A., Shibli, S., Korma, S. A., Madjirebaye, P., Esatbeyoglu, T., & Deng, Z. (2022). Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods, 11(20), 3307.‏
[5] Rezazadeh-Bari, M., Najafi-Darmian, Y., Alizadeh, M., & Amiri, S. (2019). Numerical optimization of probiotic Ayran production based on whey containing transglutaminase and Aloe vera gel. Journal of food science and technology, 56, 3502-3512.‏
[6] Pisoschi, A. M., & Negulescu, G. P. (2011). Methods for total antioxidant activity determination: a review. Biochem Anal Biochem, 1(1), 106.‏
[7] Kaveh, S., Mahoonak, A. S., Erfanimoghadam, V., Ghorbani, M., Gholamhosseinpour, A., & Reisi, M. (2023). Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes.‏
[8] Chalamaiah, M., Yu, W., & Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food chemistry, 245, 205-222.‏
[9] Accardo, A., & Morelli, G. (2015). Review peptide‐targeted liposomes for selective drug delivery: Advantages and problematic issues. Peptide Science, 104(5), 462-479.‏
[10] Zambrowicz, A., Timmer, M., Polanowski, A., Lubec, G., & Trziszka, T. (2013). Manufacturing of peptides exhibiting biological activity. Amino acids, 44, 315-320.‏
[11] Adebiyi, A. P., Adebiyi, A. O., Ogawa, T., & Muramoto, K. (2008). Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. International journal of food science & technology, 43(1), 35-43.‏
[12] Gohi, B. F. C. A., Du, J., Zeng, H. Y., Cao, X. J., & Zou, K. M. (2019). Microwave pretreatment and enzymolysis optimization of the Lotus seed protein. Bioengineering, 6(2), 28.‏
[13] Ketnawa, S., & Liceaga, A. M. (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and bioprocess technology, 10, 582-591.‏
[14] Wang, S., Xu, X., Wang, S., Wang, J., & Peng, W. (2022). Effects of microwave treatment on structure, functional properties and antioxidant activities of germinated tartary buckwheat protein. Foods, 11(10), 1373.‏
[15] Feyzi, S., Varidi, M., Zare, F. and Varidi, M.J., 2018. Effect of drying methods on the structure, thermo and functional properties of fenugreek (Trigonella foenum graecum) protein isolate. Journal of the Science of Food and Agriculture, 98(5), pp.1880-1888.
[16] Adjonu, R., Doran, G., Torley, P. and Agboola, S., 2014. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering, 122, pp.15-27.
[17] Kruger, N.J., 2009. The Bradford method for protein quantitation. The protein protocols handbook, pp.17-24.
[18] Wu, H.C., Chen, H.M. and Shiau, C.Y., 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), pp.949-957.
[19] Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121: 178–184.
[20] Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Jafari, M. and Sarabandi, K. (2019). Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 14(1).
[21] Alvand, M., Sadeghi Mahoonak, A., Ghorbani, M., Shahiri Tabarestani, H. and Kaveh, S., 2022. Comparison of the Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein by Pancreatin and Alcalase. Food Engineering Research, 21(2), pp.75-90.
[22] Maqsoodlou, A. Sadeghi Mahonek, A. Mohebuddini, H. 2016. Investigating the antioxidant properties of bee pollen hydrolyzed protein. Iran Journal of Food Sciences and Industries, 14(73), 240-227.
[23] Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., ... & Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 40(6), 761-767.‏
[24] Cui, L., Yang, G., Lu, S., Zeng, X., He, J., Guo, Y., ... & Wu, Z. (2022). Antioxidant peptides derived from hydrolyzed milk proteins by Lactobacillus strains: A BIOPEP-UWM database-based analysis. Food Research International, 156, 111339.‏
[25] Esmaeili Kharyeki, M., & Hoseyni, S. M. (2023). The effect of microwave pretreatment on degree of hydrolysis and antioxidant activity of Beluga (Huso huso) viscera protein hydrolysate. Journal of food science and technology (Iran), 19(133), 155-165.‏
[26] Meshginfar, N., Sadeghi Mahonak, A., Ghorbani, M., Ziaiefar, A., Kashaninejad, K. 2014. Optimizing the production of hydrolyzed protein from by-products of the meat industry using the response surface method. Food Industry Research, 24(2), 225-215.
[27] Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B. and Zhang, M., 2014. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 62, pp.595-601.
[28] Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry, 111(2), pp.370-376.
[29] Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F., 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), pp.1317-1327.
[30] Gazikalović, I., Mijalković, J., Šekuljica, N., Jakovetić Tanasković, S., Đukić Vuković, A., Mojović, L., & Knežević-Jugović, Z. (2021). Synergistic effect of enzyme hydrolysis and microwave reactor pretreatment as an efficient procedure for gluten content reduction. Foods, 10(9), 2214.‏
[31] Zheng, B., Teng, L., Xing, G., Bi, Y., Yang, S., Hao, F., ... & Xie, J. (2015). Proliposomes containing a bile salt for oral delivery of Ginkgo biloba extract: formulation optimization, characterization, oral bioavailability and tissue distribution in rats. European journal of pharmaceutical sciences, 77, 254-264.‏
[32] Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), pp.238-242.
[33] Kaveh, S., Mahoonak, A. S., Ghorbani, M., & Jafari, S. M. (2022). Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, 114908.‏
[34] Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138-1146.‏
[35] Mazloumi, S. N., Sa Sadeghi Mahonek, A., Ghorbani, M., Houshmand, G. 2018. Determining the optimal conditions for the production of antioxidant peptides obtained from the hydrolysis of orange core protein with alcalase enzyme. Iranian journal of food science and industry. 16(88), 343-356.
[36] da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234.‏
[37] Lin, Y. J., Le, G. W., Wang, J. Y., Li, Y. X., Shi, Y. H., & Sun, J. (2010). Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. International Journal of Molecular Sciences, 11(11), 4297-4308.‏
[38] Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), 1233-1240.‏
[39] Nguyen, E., Jones, O., Kim, Y. H. B., San Martin-Gonzalez, F., & Liceaga, A. M. (2017). Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries science, 83, 317-331.‏
[40] Gohi, B. F. C. A., Du, J., Zeng, H. Y., Cao, X. J., & Zou, K. M. (2019). Microwave pretreatment and enzymolysis optimization of the Lotus seed protein. Bioengineering, 6(2), 28.‏
[41] Bakhshabadi, H., Mirzaei, H., Ghodsvali, A., Jafari, S. M., Ziaiifar, A. M., & Farzaneh, V. (2017). The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds’ oil. Industrial crops and products, 97, 1-9.‏