بررسی تاثیر نانوذرات سیلیکا و فرایند فرابنفش بر میزان سم زدایی زیرالنون در روغن های آفتابگردان

نویسندگان
1 گروه مواد غذایی،واحد کرمانشاه،دانشگاه آزاد اسلامی،کرمانشاه،ایران
2 مرکز تحقیقات عوامل محیطی موثر بر سلامت دانشگاه علوم پزشکی کرمانشاه
3 مرکز تحقیقات بیوتکنولوژی گیاهی، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
چکیده
در این مطالعه، اثر نانوذرات سیلیکا (SNPs) و تابش UV بر حذف زیرالنون (ZEN) از روغن آفتابگردان بررسی شد. نمونه روغن آفتابگردان خالص آلودگی به ZEN را نشان نداد. بهترین شرایط برای حذف ZEN توسط SNPs در زمان تماس 240 دقیقه، غلظت اولیه ZEN برابر با 25 میکروگرم بر لیتر، و مقدار 4 میلی‌گرم SNPs تعیین شد. داده‌های سینتیکی مطابق مدل فروندلیچ و مدل شبه مرتبه دوم بودند. نتایج نشان داد که SNPs ظرفیت جذب بالایی داشته و به عنوان یک جاذب مناسب برای حذف ZEN در روغن آفتابگردان عمل می‌کنند. تاثیر SNPs در کاهش ZEN بسیار موثرتر از تابش UV بود. مکانیسم جذب احتمالی شامل پیوند شیمیایی گروه عملکردی ZEN با گروه‌های سیلیکا و تخلخل بالای SNPs می‌باشد. استفاده از SNPs به دلیل هزینه کم و عدم اثر سمی، روش موثری برای حذف ZEN از محصولات غذایی معرفی شد. این روش می‌تواند به عنوان یک راهکار موثر برای حذف ZEN در نمونه‌های طبیعی مانند روغن خوراکی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of nano-silica, microwave heating, and ultraviolet irradiation effects on zearalenone detoxification in sunflower oils

نویسندگان English

Neda Ghaffari 1
Ehsan Sadeghi 2
Nasrin Choobkar 3
1 Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University
2 Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah
3 Plant Biotechnology Research Center, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده English

In this study, the effect of silica nanoparticles (SNPs) and UV radiation on the removal of zearalenone (ZEN) from sunflower oil was investigated. Pure sunflower oil samples showed no contamination with ZEN. The optimal conditions for ZEN removal using SNPs were determined to be a contact time of 240 minutes, an initial ZEN concentration of 25 µg/L, and 4 mg of SNPs. The kinetic data conformed to the Freundlich model and pseudo-second-order model. The results showed that SNPs have a high adsorption capacity and act as an effective adsorbent for removing ZEN from sunflower oil. The effect of SNPs in reducing ZEN was significantly more effective than UV radiation. The probable adsorption mechanism includes the chemical bonding of ZEN functional groups with silica groups and the high porosity of SNPs. Due to the low cost and non-toxic nature, the use of SNPs was introduced as an effective method for ZEN removal from food products. This method can be utilized as an efficient approach for ZEN removal in natural samples like edible oil.

کلیدواژه‌ها English

Silica Nanoparticles
Zearalenone
Sunflower oil
UV radiation
Adsorption
[1] Ahmadi M, Jahed Khaniki G, Shariatifar N, Molaee-Aghaee E. Investigation of aflatoxins level in some packaged and bulk legumes collected from Tehran market of Iran. International Journal of Environmental Analytical Chemistry. 2022;102(16):4804-13.
[2] Fakhri Y, Ghorbani R, Taghavi M, Keramati H, Amanidaz N, Moradi B, et al. Concentration and prevalence of aflatoxin M1 in human breast milk in Iran: Systematic review, meta-analysis, and carcinogenic risk assessment: A review. Journal of food protection. 2019;82(5):785-95.
[3] Babakhanian A, Momeneh T, Aberoomand-azar P, Kaki S, Torki M, Kiaie SH, et al. A fabricated electro-spun sensor based on Lake Red C pigments doped into PAN (polyacrylonitrile) nano-fibers for electrochemical detection of Aflatoxin B1 in poultry feed and serum samples. Analyst. 2015;140(22):7761-7.
[4] Richard JL. Some major mycotoxins and their mycotoxicoses—An overview. International journal of food microbiology. 2007;119(1-2):3-10.
[5] Gazzah AC, Camoin L, Abid S, Bouaziz C, Ladjimi M, Bacha H. Identification of proteins related to early changes observed in Human hepatocellular carcinoma cells after treatment with the mycotoxin Zearalenone. Experimental and toxicologic pathology. 2013;65(6):809-16.
[6] Poór M, Kunsági-Máté S, Bálint M, Hetényi C, Gerner Z, Lemli B. Interaction of mycotoxin zearalenone with human serum albumin. Journal of Photochemistry and Photobiology B: Biology. 2017;170:16-24.
[7] Akhavan‐Mahdavi S, Mirzazadeh M, Alam Z, Solaimanimehr S. The effect of chitosan coating combined with cold plasma on the quality and safety of pistachio during storage. Food Science & Nutrition. 2023;11(7):4296-307.
[8] Noroozi R, Sadeghi E, Rouhi M, Safajoo S, Razmjoo F, Paimard G, et al. Fates of aflatoxin B1 from wheat flour to Iranian traditional cookies: Managing procedures to aflatoxin B1 reduction during traditional processing. Food science & nutrition. 2020;8(11):6014-22.
[9] Zhang W, Zhang S, Wang J, Dong J, Cheng B, Xu L, et al. A novel adsorbent albite modified with cetylpyridinium chloride for efficient removal of zearalenone. Toxins. 2019;11(11):674.
[10] Poór M, Faisal Z, Zand A, Bencsik T, Lemli B, Kunsági-Máté S, et al. Removal of zearalenone and zearalenols from aqueous solutions using insoluble beta-cyclodextrin bead polymer. Toxins. 2018;10(6):216.
[11] Wu N, Ou W, Zhang Z, Wang Y, Xu Q, Huang H. Recent advances in detoxification strategies for zearalenone contamination in food and feed. Chinese Journal of Chemical Engineering. 2021;30:168-77.
[12] Wang N, Wu W, Pan J, Long M. Detoxification strategies for zearalenone using microorganisms: A review. Microorganisms. 2019;7(7):208.
[13] Tan H, Guo T, Zhou H, Dai H, Yu Y, Zhu H, et al. A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Analytical and bioanalytical chemistry. 2020;412:5627-35.
[14] Savi GD, Torres Zanoni E, Scussel R, Córneo EdS, Guimarães Furtado B, Macuvele DLP, et al. Mesoporous silica nanoparticles adsorb aflatoxin B1 and reduce mycotoxin-induced cell damage. Journal of Environmental Science and Health, Part B. 2023;58(1):1-9.
[15] Horky P, Skalickova S, Baholet D, Skladanka J. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials. 2018;8(9):727.
[16] Liu M, Zhao L, Gong G, Zhang L, Shi L, Dai J, et al. Invited review: Remediation strategies for mycotoxin control in feed. Journal of Animal Science and Biotechnology. 2022;13(1):19.
[17] Haidukowski M, Casamassima E, Cimmarusti MT, Branà MT, Longobardi F, Acquafredda P, et al. Aflatoxin B1-adsorbing capability of Pleurotus eryngii mycelium: efficiency and modeling of the process. Frontiers in Microbiology. 2019;10:1386.
[18] Kifer D, Jakšić D, Šegvić Klarić M. Assessing the effect of mycotoxin combinations: which mathematical model is (the most) appropriate? Toxins. 2020;12(3):153.
[19] Raesi S, Mohammadi R, Khammar Z, Paimard G, Abdalbeygi S, Sarlak Z, et al. Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models. Lwt. 2022;154:112638.
[20] Nicolau-Lapeña I, Rodríguez-Bencomo JJ, Colás-Medà P, Viñas I, Sanchis V, Alegre I. Ultraviolet applications to control patulin produced by Penicillium expansum CMP-1 in apple products and study of further patulin degradation products formation and toxicity. Food and Bioprocess Technology. 2023;16(4):804-23.
[21] Garcia D, Ramos AJ, Sanchis V, Marín S. Modeling kinetics of aflatoxin production by Aspergillus flavus in maize-based medium and maize grain. International journal of food microbiology. 2013;162(2):182-9.
[22] Buckley A, Greenblatt M. The sol-gel preparation of silica gels. journal of chemical education. 1994;71(7):599.
[23] Al-Harbi T, Al-Hazmi F, Mahmoud WE. Synthesis and characterization of nanoporous silica film via non-surfactant template sol–gel technique. Superlattices and Microstructures. 2012;52(4):643-7.
[24] Zhao Z, Liu N, Yang L, Wang J, Song S, Nie D, et al. Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control. 2015;57:362-9.
[25] Aguilar-Zuniga K, Laurie VF, Moore-Carrasco R, Ortiz-Villeda B, Carrasco-Sánchez V. Agro-industrial waste products as mycotoxin biosorbents: a review of in vitro and in vivo studies. Food Reviews International. 2023;39(5):2914-30.
[26] Jard G, Liboz T, Mathieu F, Guyonvarc’h A, Lebrihi A. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A. 2011;28(11):1590-609.
[27] Pourmohammadi K, Sayadi M, Abedi E, Mousavifard M. Determining the adsorption capacity and stability of Aflatoxin B1, Ochratoxin A, and Zearalenon on single and co-culture L. acidophilus and L. rhamnosus surfaces. Journal of Food Composition and Analysis. 2022;110:104517.
[28] Hashemi SMB, Amiri MJ. A comparative adsorption study of aflatoxin B1 and aflatoxin G1 in almond butter fermented by Lactobacillus fermentum and Lactobacillus delbrueckii subsp. lactis. LWT. 2020;128:109500.