بررسی اثر کورکومین بارگذاری شده در اگزوزوم بر تکثیر سلول های سرطانی تخمدان رده SKOV3

نویسندگان
1 گروه خانواده درمانی، پژوهشکده زنان، دانشگاه الزهرا، تهران، ایران
2 گزوه بیوشیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
3 گروه ژنتیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران
چکیده
مقدمه: کورکومین یک ترکیب پلی فنلی است که از ریزوم گیاه زردچوبه استخراج می شود. با وجود خواص ضد توموری، آنتی اکسیدانی و ضد التهابی این رنگدانه، به دلیل حلالیت ضعیف و ناپایداری در محیط های آبی و شرایط فیزیولوژیکی بدن، کاربرد آن در درمان بیماری ها محدود شده است. امروزه محققان در تلاشند تا یک نانوحامل کارآمد برای استفاده از این رنگدانه در کاربردهای دارویی طراحی کنند. اگزوزوم ها نانووزیکول های لیپیدی هستند که توسط انواع سلول ها در محیط خارج سلولی رها می شوند و وظیفه انتقال مواد بیولوژیکی بین سلول ها را بر عهده دارند، بنابراین بهترین انتخاب برای این هدف محسوب می شوند. در این مطالعه، بارگذاری کورکومین در اگزوزوم ها برای افزایش حلالیت و پایداری آن و تسهیل تحویل آن به سلول های تخمدانی مورد ارزیابی قرار گرفت.

روش‌ها: پس از جداسازی اگزوزوم با اولتراسانتریفیوژ و بررسی ساختار آن با SEM، TEM و DLS، کورکومین با سه روش انکوباسیون، سونیکاسیون و چرخه‌های متوالی انجماد- ذوب در اگزوزوم بارگذاری و سپس با استفاده از روش MTT، اثر سمیت کورکومین بر سلول‌های SKOV3 بررسی شد.

یافته‌ها: نتایج نشان داد که میزان بارگذاری کورکومین در اگزوزوم بسیار کم (کمتر از 10 درصد) بوده و سونیکاسیون و اعمال چرخه های انجماد-ذوب هیچ تأثیری بر افزایش بارگذاری کورکومین در اگزوزوم‌ها ندارند. بر اساس نتایج تست سمیت، مقدار IC50 کورکومین آزاد و کورکومین بارگذاری شده اگزوزومی به ترتیب 150 و 200 میکروگرم بر میلی لیتر بود. اگرچه درصد بارگذاری کورکومین بسیار پایین بود، اما نتایج سنجش MTT نشان داد که بارگذاری کورکومین در اگزوزوم نقش مهمی در تحویل کارآمد آن به سلول‌های SKOV3 دارد.

نتیجه‌گیری: می‌توان نتیجه گرفت که با وجود پایداری بسیار بالای اگزوزوم‌ها و ایمنی این نانووزیکول‌های سلولی، برای کارایی بهتر در دارورسانی، باید مطالعات بیشتری برای بهینه‌سازی روش‌های بارگذاری دارو در اگزوزوم‌ها انجام شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of curcumin-loaded exosomes on the proliferation of human ovarian cancer SKOV3 cells

نویسندگان English

Reihaneh Ramezani 1
Hanieh Minatour Sajadi 2
Sadegh Babashah 3
1 Department of Family Therapy, Women Research Center, Alzahra University, Tehran, Iran
2 Department of Biochemistry, Faculty of Life Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
3 Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
چکیده English

Background: Curcumine is polyphenol compound which is extracted from the rhizome of the turmeric plant. Despite the anti-tumor, antioxidant and anti-inflammantaroty properties of this pigment, due to poor solubility and instability in the aqueos environments, its application in the treatment of disease has been limited. Today researchers are trying to design an efficient nanocarrier for employing this pigment in pharmaceutical application. Exosomes are lipis nanovesicles are released into extracellular environment by all types of cells and are responsible for the transfer of biological materials beween cells, so they are considered the best candidate for this goal. In this study, we aimed to load curcumin into the exosomes to increase its solubility and stability and facilitate its delivery ito ovarian cells.

Methods: After isolating the exosome by ultracentrifugation and verifying its structure with SEM, TEM and DLS, curcumine was loaded into the exosome by three methods of incubation, sonication and freez-thaw cycles. Then, using MTT assay, the toxicity effect of curcumine on SKOV3 cells was investigated.

Results: the results showed that the amount of curcumin loading into exosome was very low (less than 10%) and it was found that sonication and freez-thaw cycles have no effect on increasing the loading curcumin into the exosomes. Based on the results of toxicity test, IC50 value of free curcumin and exosome loaded curcumin was 150 and 200 respectively. Although the loading percentage of curcumin was very low, the MTT assay results showed that the loading of curcumine into the exosome plays a significant role in its efficient delivery to SKOV3 cells.

Conclusions: It can be concluded that despite the very high stability of exosomes and saffety of these cellular nanovesicles, for better efficiency in drug delivery, more studies should be done for optimizing the methods of drug loading into exosomes.

کلیدواژه‌ها English

Curcumin
Exosome
drug loading
Ovarian cancer
SKOV3
[1]. Rani, I. and D.A. Goyal, 2017. Curcumin: A Multiple Edged Sword in the Prevention of Cancer. Global Journal of Pharmacy & Pharmaceutical Sciences, 1(3): p. 76-78.
[2]. Liu, X., et al., 2023. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. Journal of Ovarian Research, 16(1): p. 47.
[3]. Iweala, E.J., et al., 2023. Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review. Pharmacological Research - Modern Chinese Medicine, 6: p. 100222.
[4]. Liu, D. and Z. Chen, 2013. The effect of curcumin on breast cancer cells. J Breast Cancer, 16(2): p. 133-7.
[5]. Gupta, T., et al., 2020. Enhancing Bioavailability and Stability of Curcumin Using Solid Lipid Nanoparticles (CLEN): A Covenant for Its Effectiveness. Frontiers in Bioengineering and Biotechnology, 8.
[6]. Anand, P., et al., 2007. Bioavailability of Curcumin: Problems and Promises. Molecular Pharmaceutics, 4(6): p. 807-818.
[7]. Kumavat, S., et al., 2013. Degradation studies of curcumin. International Journal of Pharmacy Review & Research, 3: p. 50-55.
[8]. Priyadarsini, K.I., 2014. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12): p. 20091-112.
[9]. Mondal, S., S. Ghosh, and S.P. Moulik, 2016. Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. Journal of Photochemistry and Photobiology B: Biology, 158: p. 212-218.
[10]. Karthikeyan, A., N. Senthil, and T. Min, 2020. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol, 11: p. 487.
[11]. Soares Martins, T., et al., 2018. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 13(6): p. e0198820.
[12]. Akaberi, M., A. Sahebkar, and S.A. Emami, 2021. Turmeric and Curcumin: From Traditional to Modern Medicine. Adv Exp Med Biol, 1291: p. 15-39.
[13]. Mansouri, K., et al., 2020. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 20(1): p. 791.
[14]. Zoi, V., et al., 2021. The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9).
[15]. Allegra, A., et al., 2022. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells, 11(7): p. 1128.
[16]. Yin, Z. and J. Sun, 2014. Curcumin induces human SKOV3 cell apoptosis via the activation of Rho-kinase. Eur J Gynaecol Oncol, 35(4): p. 433-7.
[17]. Yu, Z., et al., 2016. Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. Pharm Biol, 54(10): p. 2026-32.
[18]. Dan, W., et al., 2022. Effect of curcumin on the viability of SKOV3 cells and its probable mechanism of action. Tropical Journal of Pharmaceutical Research.
[19]. Kumari, N., et al., 2015. Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug design, development and therapy, 9: p. 5051-60.
[20]. He, R., et al., 2020. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Materials Science and Engineering: C, 117: p. 111314.
[21]. Han, Z., et al., 2022. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. Journal of Agricultural and Food Chemistry, 70(49): p. 15464-15473.
[22]. Kulbacka, J., et al., 2022. Curcumin Loaded Nanocarriers with Varying Charges Augmented with Electroporation Designed for Colon Cancer Therapy. Int J Mol Sci, 23(3).
[23]. Tahmasebi Mirgani, M., et al., 2014. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine, 9: p. 403-17.
[24]. Bhatti, J.S., et al., 2019. Chapter 7 - Exosome nanocarriers: A natural, novel, and perspective approach in drug delivery system, in Nanoarchitectonics in Biomedicine, A.M. Grumezescu, Editor, William Andrew Publishing. p. 189-218.
[25]. Wang, Y., et al., 2020. Exosomes as Actively Targeted Nanocarriers for Cancer Therapy. Int J Nanomedicine, 15: p. 4257-4273.
[26]. Chung, I.-M., et al., 2020. Exosomes: Current use and future applications. Clinica Chimica Acta, 500: p. 226-232.
[27]. Oskouie, M.N., et al., 2019. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. Journal of Cellular Physiology, 234(6): p. 8182-8191.
[28]. Gao, C., et al., 2022. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics, 12(12): p. 5596-5614.
[29]. Vashisht, M., et al., 2017. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro. Applied Biochemistry and Biotechnology, 183.
[30]. González-Sarrías, A., et al., 2022. Milk-Derived Exosomes as Nanocarriers to Deliver Curcumin and Resveratrol in Breast Tissue and Enhance Their Anticancer Activity. Int J Mol Sci, 23(5).
[31]. Anula Divyash Singh, et al., 2021. Bovine Milk Derived Exosomal -Curcumin Exhibiting Enhanced Stability, Solubility, and Cellular Bioavailability OPEN ACCESS Citation. Clinics in Oncology, Volume 6: p. Article 1769.
[32]. Mazidimoradi, A., et al., 2022. The global, regional and national epidemiology, incidence, mortality, and burden of ovarian cancer. Health Sci Rep, 5(6): p. e936.
[33]. Aqil, F., et al., 2017. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. The AAPS Journal, 19(6): p. 1691-1702.
[34]. Li, Y., C. Huang, and Y. Xu, 2022. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload. Frontiers in Bioengineering and Biotechnology, 10.