[1]. Rani, I. and D.A. Goyal, 2017. Curcumin: A Multiple Edged Sword in the Prevention of Cancer. Global Journal of Pharmacy & Pharmaceutical Sciences, 1(3): p. 76-78.
[2]. Liu, X., et al., 2023. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. Journal of Ovarian Research, 16(1): p. 47.
[3]. Iweala, E.J., et al., 2023. Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review. Pharmacological Research - Modern Chinese Medicine, 6: p. 100222.
[4]. Liu, D. and Z. Chen, 2013. The effect of curcumin on breast cancer cells. J Breast Cancer, 16(2): p. 133-7.
[5]. Gupta, T., et al., 2020. Enhancing Bioavailability and Stability of Curcumin Using Solid Lipid Nanoparticles (CLEN): A Covenant for Its Effectiveness. Frontiers in Bioengineering and Biotechnology, 8.
[6]. Anand, P., et al., 2007. Bioavailability of Curcumin: Problems and Promises. Molecular Pharmaceutics, 4(6): p. 807-818.
[7]. Kumavat, S., et al., 2013. Degradation studies of curcumin. International Journal of Pharmacy Review & Research, 3: p. 50-55.
[8]. Priyadarsini, K.I., 2014. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12): p. 20091-112.
[9]. Mondal, S., S. Ghosh, and S.P. Moulik, 2016. Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. Journal of Photochemistry and Photobiology B: Biology, 158: p. 212-218.
[10]. Karthikeyan, A., N. Senthil, and T. Min, 2020. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol, 11: p. 487.
[11]. Soares Martins, T., et al., 2018. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 13(6): p. e0198820.
[12]. Akaberi, M., A. Sahebkar, and S.A. Emami, 2021. Turmeric and Curcumin: From Traditional to Modern Medicine. Adv Exp Med Biol, 1291: p. 15-39.
[13]. Mansouri, K., et al., 2020. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 20(1): p. 791.
[14]. Zoi, V., et al., 2021. The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9).
[15]. Allegra, A., et al., 2022. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells, 11(7): p. 1128.
[16]. Yin, Z. and J. Sun, 2014. Curcumin induces human SKOV3 cell apoptosis via the activation of Rho-kinase. Eur J Gynaecol Oncol, 35(4): p. 433-7.
[17]. Yu, Z., et al., 2016. Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. Pharm Biol, 54(10): p. 2026-32.
[18]. Dan, W., et al., 2022. Effect of curcumin on the viability of SKOV3 cells and its probable mechanism of action. Tropical Journal of Pharmaceutical Research.
[19]. Kumari, N., et al., 2015. Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug design, development and therapy, 9: p. 5051-60.
[20]. He, R., et al., 2020. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Materials Science and Engineering: C, 117: p. 111314.
[21]. Han, Z., et al., 2022. Curcumin-Encapsulated Fusion Protein-Based Nanocarrier Demonstrated Highly Efficient Epidermal Growth Factor Receptor-Targeted Treatment of Colorectal Cancer. Journal of Agricultural and Food Chemistry, 70(49): p. 15464-15473.
[22]. Kulbacka, J., et al., 2022. Curcumin Loaded Nanocarriers with Varying Charges Augmented with Electroporation Designed for Colon Cancer Therapy. Int J Mol Sci, 23(3).
[23]. Tahmasebi Mirgani, M., et al., 2014. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine, 9: p. 403-17.
[24]. Bhatti, J.S., et al., 2019. Chapter 7 - Exosome nanocarriers: A natural, novel, and perspective approach in drug delivery system, in Nanoarchitectonics in Biomedicine, A.M. Grumezescu, Editor, William Andrew Publishing. p. 189-218.
[25]. Wang, Y., et al., 2020. Exosomes as Actively Targeted Nanocarriers for Cancer Therapy. Int J Nanomedicine, 15: p. 4257-4273.
[26]. Chung, I.-M., et al., 2020. Exosomes: Current use and future applications. Clinica Chimica Acta, 500: p. 226-232.
[27]. Oskouie, M.N., et al., 2019. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes. Journal of Cellular Physiology, 234(6): p. 8182-8191.
[28]. Gao, C., et al., 2022. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics, 12(12): p. 5596-5614.
[29]. Vashisht, M., et al., 2017. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro. Applied Biochemistry and Biotechnology, 183.
[30]. González-Sarrías, A., et al., 2022. Milk-Derived Exosomes as Nanocarriers to Deliver Curcumin and Resveratrol in Breast Tissue and Enhance Their Anticancer Activity. Int J Mol Sci, 23(5).
[31]. Anula Divyash Singh, et al., 2021. Bovine Milk Derived Exosomal -Curcumin Exhibiting Enhanced Stability, Solubility, and Cellular Bioavailability OPEN ACCESS Citation. Clinics in Oncology, Volume 6: p. Article 1769.
[32]. Mazidimoradi, A., et al., 2022. The global, regional and national epidemiology, incidence, mortality, and burden of ovarian cancer. Health Sci Rep, 5(6): p. e936.
[33]. Aqil, F., et al., 2017. Exosomes for the Enhanced Tissue Bioavailability and Efficacy of Curcumin. The AAPS Journal, 19(6): p. 1691-1702.
[34]. Li, Y., C. Huang, and Y. Xu, 2022. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload. Frontiers in Bioengineering and Biotechnology, 10.