ارزیابی ویژگی‌های شیمیایی و کنترل رشد قارچ‌های عامل پوسیدگی پس از برداشت میوه انگور با استفاده از اسانس زنجبیل (Zingiber officinale)

نویسندگان
1 1- استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.
2 استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران.
چکیده
رشد پاتوژن های قارچی روی میوه انگور سبب افت کیفیت و کاهش ماندگاری آن می‌گردد. در این مطالعه، فعالیت ضد قارچی اسانس زنجبیل در برابر پاتوژن‌های قارچی عامل فساد پس از برداشت میوه انگور مورد بررسی قرار گرفت. اسانس زنجبیل با استفاده از روش تقطیر با آب استخراج گردید و محتوای فنول کل، فلاونوئید کل، فعالیت آنتی‌اکسیدانی بر پایه مهار رادیکال‌های آزاد DPPH و ABTS و فعالیت ضد قارچی آن در برابر سویه‌های آسپرژیلوس نایجر، ریزوپوس استولونیفر و بوتریتیس سینه­را بر اساس روش‌های انتشار در دیسک، انتشار در چاهک، حداقل غلظت مهارکنندگی رشد و حداقل غلظت کشندگی مورد ارزیابی قرار گرفت. نتایج نشان داد که اسانس زنجبیل دارای mg GA/g 80/89 فنول کل و mg QE/g 60/38 فلاونوئید کل می‌باشد. فعالیت آنتی‌اکسیدانی آن در برابر رادیکال‌های آزاد DPPH و ABTS به ترتیب برابر با 45/73 و 53/66 میکروگرم در میلی‌لیتر بود. نتایج فعالیت ضد قارچی نشان داد که آسپرژیلوس نایجر و بوتریتیس سینه­را به ترتیب حساس‌ترین و مقاوم‌ترین سویه‌های قارچی نسبت به اسانس بودند و قطر هاله عدم رشد در روش انتشار در دیسک و انتشار در چاهک، حداقل غلظت مهارکنندگی و حداقل غلظت کشندگی برای سویه آسپرژیلوس نایجر به ترتیب برابر با 90/13 میلی‌متر، 50/14 میلی‌متر، 8 میلی‌گرم در میلی‌لیتر و 64 میلی‌گرم در میلی‌لیتر بود. بطور کلی، اسانس زنجبیل قابلیت استفاده بعنوان عامل آنتی‌اکسیدان و ضد میکروب جهت افزایش عمر نگهداری محصولات کشاورزی را دارا می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the chemical characteristics and control of the growth of spoilage fungi causing rot in grape fruit using ginger essential oil (Zingiber officinale)

نویسندگان English

Mostafa Rahmati-Joneidabad 1
Mohammad Reza Zare-Bavani 1
Fatemeh Borna 2
1 1 - Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
چکیده English

The growth of fungal pathogens on the grape fruit causes a decrease in its quality and shelf life. In this study, the antifungal activity of ginger (Zingiber officinale) essential oil was investigated against fungal pathogens that cause spoilage in grape fruit. Ginger essential oil was extracted using hydrodistillation method and the content of total phenol, total flavonoid, antioxidant activity based on the inhibition of DPPH and ABTS free radicals and its antifungal activity against Aspergillus niger, Rhizopus stolonifer and Botrytis cinerea strains based on disc diffusion agar, well diffusion agar, minimum inhibitory concentration, and minimum fungicidal concentration were evaluated. The results showed that ginger essential oil has 89.80 mg GA/g total phenol and 38.60 mg QE/g total flavonoid. Its antioxidant activity against DPPH and ABTS free radicals was 73.45 and 66.53 μg/ml, respectively. The results of antifungal activity showed that A. niger and B. cinerea were the most sensitive and resistant fungal strains to essential oil, respectively, and the diameter of the inhibition zone in the disc diffusion and well diffusion agar methods, the minimum inhibitory concentration, and the minimum fungicidal concentration for the A. niger strain was equal to 13.90 mm, 14.50 mm, 8 mg/mL and 64 mg/mL, respectively. In general, ginger essential oil can be used as an antioxidant and antimicrobial agent to increase the shelf life of agricultural products.

کلیدواژه‌ها English

ginger essential oil
Grapes
Fungal pathogens
Antimicrobial effect
shelf life
[1] Yadav, M., et al., Biological and Medicinal Properties of Grapes and Their Bioactive Constituents: An Update. Journal of Medicinal Food, 2009. 12(3): p. 473-484.
[2] Zhou, D.-D., et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods, 2022. 11, 2755 DOI: 10.3390/foods11182755.
[3] Casas, R., et al. Nutrition and Cardiovascular Health. International Journal of Molecular Sciences, 2018. 19, 3988 DOI: 10.3390/ijms19123988.
[4] Spadaro, D. and S. Droby, Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 2016. 47: p. 39-49.
[5] Rotolo, C., et al., Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Pest management science, 2018. 74(3): p. 715-725.
[6] Calhelha, R.C., et al., Toxicity effects of fungicide residues on the wine-producing process. Food microbiology, 2006. 23(4): p. 393-398.
[7] Liu, Q., et al. Antibacterial and Antifungal Activities of Spices. International Journal of Molecular Sciences, 2017. 18, DOI: 10.3390/ijms18061283.
[8] Tanapichatsakul, C., S. Khruengsai, and P. Pripdeevech, In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes. Plos one, 2020. 15(11): p. e0242862.
[9] Böhme, K., et al., Antibacterial, Antiviral and Antifungal Activity of Essential Oils: Mechanisms and Applications, in Antimicrobial Compounds: Current Strategies and New Alternatives, T.G. Villa and P. Veiga-Crespo, Editors. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 51-81.
[10] Sukatta, U., et al., Antifungal activity of clove and cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Agriculture and Natural Resources, 2008. 42(5): p. 169-174.
[11] Munda, S., et al., Chemical Analysis and Therapeutic Uses of Ginger (Zingiber officinale Rosc.) Essential Oil: A Review. Journal of Essential Oil Bearing Plants, 2018. 21(4): p. 994-1002.
[12] Nerilo, S.B., et al., Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber officinale essential oil in Aspergillus flavus. International Journal of Food Science & Technology, 2016. 51(2): p. 286-292.
[13] Siripoltangman, N. and J. Chickos, Vapor pressure and vaporization enthalpy studies of the major components of ginger, α-zingiberene, β-sesquiphellandrene and (−) ar curcumene by correlation gas chromatography. The Journal of Chemical Thermodynamics, 2019. 138: p. 107-115.
[14] Al-Dhahli, A.S., et al., Essential oil from the rhizomes of the Saudi and Chinese Zingiber officinale cultivars: Comparison of chemical composition, antibacterial and molecular docking studies. Journal of King Saud University-Science, 2020. 32(8): p. 3343-3350.
[15] Ghuffar, S., et al., Studies of Penicillium species associated with blue mold disease of grapes and management through plant essential oils as non-hazardous botanical fungicides. 2021. 10(1): p. 021-036.
[16] Tančinová, D., et al. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods, 2022. 11, DOI: 10.3390/foods11192945.
[17] Ivanović, M., K. Makoter, and M. Islamčević Razboršek Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants, 2021. 10, DOI: 10.3390/plants10030501.
[18] El-Ghorab, A.H., et al., A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). Journal of agricultural and food chemistry, 2010. 58(14): p. 8231-8237.
[19] Barzegar, H., B. Alizadeh Behbahani, and M.A. Mehrnia, Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Science and Biotechnology, 2020. 29(5): p. 717-728.
[20] Bellik, Y., et al., Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. International Journal of Food Properties, 2013. 16(6): p. 1304-1313.
[21] Alizadeh Behbahani, B., et al., Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization, 2017. 11: p. 847-863.
[22] Noshad, M., M. Hojjati, and B.A. Behbahani, Black Zira essential oil: Chemical compositions and antimicrobial activity against the growth of some pathogenic strain causing infection. Microbial pathogenesis, 2018. 116: p. 153-157.
[23] Rahmati-Joneidabad, M., B. Alizadeh Behbahani, and M. Noshad, Antifungal effect of Satureja khuzestanica essential oil on Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer causing strawberry’s rot and mold. Journal of food science and technology (Iran), 2021. 18(115): p. 171-180.
[24] Ali, A.M.A., M.E.M. El-Nour, and S.M. Yagi, Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal of genetic engineering and biotechnology, 2018. 16(2): p. 677-682.
[25] Falah, F., et al., In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatalysis and Agricultural Biotechnology, 2021. 35: p. 102102.
[26] Alizadeh Behbahani, B., et al., Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food science & nutrition, 2021. 9(5): p. 2458-2467.
[27] Heydari, S., et al., The impact of Qodume Shirazi seed mucilage‐based edible coating containing lavender essential oil on the quality enhancement and shelf life improvement of fresh ostrich meat: An experimental and modeling study. Food Science & Nutrition, 2020. 8(12): p. 6497-6512.
[28] Nooshkam, M., M. Varidi, and M. Bashash, The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 2019. 275: p. 644-660.
[29] Garavand, F., et al., Salt, spices, and seasonings formulated with nano/microencapsulated ingredients, in Application of Nano/Microencapsulated Ingredients in Food Products. 2021, Elsevier. p. 435-467.
[30] Behbahani, B.A., et al., Antifungal effect of aqueous and ethanolic mangrove plant extract on pathogenic fungus" in vitro". International Journal of Agronomy and Plant Production, 2013. 4(7): p. 1652-1658.
[31] Shahidi, F., et al., Chemical modification of chitosan through non-enzymatic glycosylation reaction to improve its antimicrobial and anti-oxidative properties. Iranian Food Science and Technology Research Journal 2020. 16(1): p. 117-129.
[32] Tabatabaei Yazdi, F., et al., Evaluation of antimicrobial activity and antioxidant potential of chitosan Maillard-based conjugates in vitro. Applied Microbiology In Food Industries, 2018. 4(3): p. 1-15.
[33] El-Baroty, G.S., et al., Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African journal of biochemistry research, 2010. 4(6): p. 167-174.
[34] Abdullahi, A., et al., Phytochemical profiling and antimicrobial activity of ginger (Zingiber officinale) essential oils against important phytopathogens. Arabian Journal of Chemistry, 2020. 13(11): p. 8012-8025.
[35] Mesomo, M.C., et al., Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. The Journal of Supercritical Fluids, 2013. 80: p. 44-49.