ارزیابی فراوانی باکتری های ویبریو کلرا جدا شده از آب و سبزیجات و حضور ژن های حدّت و الگوی مقاومت آنتی بیوتیکی در استان قم

نویسندگان
1 ، گروه بهداشت و کنترل مواد غذایی ، دانشکده دامپزشکی، دانشگاه شهرکرد ، شهرکرد ، ایران.
2 گروه بهداشت و کنترل مواد غذایی، دانشکده دامپیزشکی، دانشگاه شهر کرد ، شهرکرد ، ایران،
3 مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی قم ، قم ، ایران
4 گروه بهداشت و کنترل مواد غذایی ، دانشکده دامپزشکی، دانشگاه شهرکرد ، شهرکرد ، ایران
چکیده
ویبریو کلرا یکی از پاتوژن های مهم انسانی است که از طریق آب و غذای آلوده منتقل می شود. بیماری های ناشی از ویبریو کلرا در استان قم به دلایل شرایط آب و هوایی خاص اندمیک است. این مطالعه با هدف بررسی میزان شیوع ویبریو کلرا در آب و سبزیجات استان قم، حضور ژن های حدّت و بررسی الگوی مقاومت آنتی بیوتیکی آن ها انجام شد. در یک دوره دو ساله (0041-1399) ، 120نمونه آب های کشاورزی(70 نمونه) و سبزیجات (50 نمونه) تولید شده در استان قم جمع آوری شدند. نمونه ها روی محیط اختصاصی کشت داده شدند. کلنی های مشکوک رنگ آمیزی گرم شده و آزمون ­های بیوشیمیایی روی آنها انجام شد و با آزمایش سرولوژی، سروتیپ ویبریو کلرا شناسایی شد. سپس بررسی حضور ژن های حدّت با روش PCR و همچنین ارزیابی الگوی مقاومت آنتی بیوتیکی در جدایه ها با روش انتشار در آگار بررسی شد. بطور کلی از 17 نمونه (16/14% (باکتری ویبریو کلرا جدا شد که همه Non-O1 بودند. میزان آلودگی آب و سبزیجات به این باکتری به ترتیب 28/14% (10مورد) و 00/14% (7 مورد ) بود. در ارزیابی ملکولی، میزان فراوانی ژن های حدّت شامل toxR(32 /88%( ، rtxA (82/58%)، hlyA (05/47%)، chxA (88/5%) بود، و100 % جدایه ها فاقد ژن هایctxA،ace و tcpAبودند. بیشترین مقاومت آنتی بیوتیکی مربوط به آمپی سیلین و آموکسی سیلین (29/34 %) و سپس به ترتیب سفوروکسیم (46/17%)، ایمی پنم (76/11%سفوکسیتین و تری متوپریم-سولفومتوکسازول (88/5%) بودند. نتایج این مطالعه نشان داد که ویبریو کلرا Non-O1 در آب و سبزیجات استان قم وجود دارد. لذا به عنوان یک منشاء مهم ایجاد بیماری برای انسان، نظارت بهداشتی مستمر بر آب و سبزیجات و ضد عفونی مناسب این مواد غذایی دارای اهمیت زیادی است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the prevalence of Vibrio cholerae isolated from water and vegetables and the presence of virulence genes and antibiotic resistance pattern in Qom province

نویسندگان English

Somaye Kermani 1
Mojtaba Bonyadian 2
saeed Shams 3
Hamdollah Moshtaghi Boroujeni 4
1 Health and Food Quality Control.Faculty of Veterinary, Shahrekord University, Shahrekord, Iran
2 Department of Health and Food Quality Control, Faculty of Veterinary, Shahrekord University, Shahrekord, Iran.
3 Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,
4 Department of Health and Food Quality Control, Faculty of Veterinary, Shahrekord University, Shahrekord, Iran
چکیده English

Vibrio cholerae is one of the important human pathogens that is transmitted through contaminated water and food. In Qom province, due to special weather conditions, diseases caused by Vibrio cholerae are endemic. The aim of this study was the prevalence of Vibrio cholerae in water and vegetables of Qom province and the presence of two virulence genes, hlyA and toxR. During two years (2020-2021), 120 samples of agricultural water (70) and vegetables (50) in Qom province were collected. The samples were cultured on specific media. Suspicious colonies were evaluated by Gram staining and biochemical tests and the serotype Vibrio cholerae was identified by serology test. Finally, Then, the presence of virulence genes was investigated by PCR method and also the antibiotic resistance pattern by disk diffusion method was evaluated in the isolates. Vibrio cholera bacteria were isolated from 17 samples (16.14%), all of which were Non-O1. The rate of contamination of water and vegetables was 28.14% (10 cases) and 14.00% (7 cases), respectively. In molecular evaluation, the abundance of virulence genes including: toxR (88.32%), rtxA (58.82%), hlyA (47.05%), chxA (5.88%), and 100% of isolates did not have ctxA, ace and tcpA genes. The most antibiotic resistance is related to ampicillin and amoxicillin (34.29%), followed by cefuroxime (17.46%), imipenem (11.76%), and cefoxitin and trimethoprim-sulfamethoxazole (5.88%). The results of this study showed that Vibrio cholerae Non-O1 is present in water and vegetables of Qom province, and as an important source of disease for humans therefore, continuous health monitoring of water and vegetables and proper disinfection of these foods is very important.

کلیدواژه‌ها English

Vibrio cholerae Non-O1
Virulence genes
Antibiotic resistance
Water
vegetables
[1] Al-Tawfiq, J.A., et al., (2023). The cholera challenge: How should the world respond? New Microbes and New Infections, 51.
[2] Pal, B.B., et al., (2023). Spectrum of ctxB genotypes, antibiogram profiles and virulence genes of Vibrio cholerae serogroups isolated from environmental water sources from Odisha, India. BMC microbiology, 23(1): p. 1-13.
[3] Saberpour, M., et al., (2022). Effects of chitosan nanoparticles loaded with mesenchymal stem cell conditioned media on gene expression in Vibrio cholerae and Caco-2 cells. Scientific Reports, 12(1): p. 9781. [4] Karaolis, D.K., R. Lan, and P.R. Reeves., (1995).The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. Journal of Bacteriology, 177(11): p. 3191-3198.
[5] Singh, D., et al., (2001). Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Applied and Environmental Microbiology, 67(2): p. 910-921.
[7] Heydari, H., et al., (2024). Evaluation of the prevalence of Aeromonas spp., Campylobacter spp., and Clostridioides difficile in immunocompromised children with diarrhea. BMC Infectious Diseases, 24(1): p. 512. [8] Shams, S., et al., (2020). Detection and characterization of rotavirus G and P types from children with acute gastroenteritis in Qom, central Iran. Gastroenterology and Hepatology From Bed To Bench, 13(Suppl1): p. S128.
[9] Barati, M., et al., (2021). Prevalence of intestinal parasitic infections and Campylobacter spp. among children with gastrointestinal disorders in Tehran, Iran. Parasite Epidemiology and Control, 13: p. e00207.
[10] Yasaie, S., et al., (2024). Prevalence of Human Adenovirus, Epstein - Barr virus, and Cytomegalovirus in Pediatric Hematologic Diseases in Iran. Infection Epidemiology and Microbiology, 10(1): p. 0-0
[11] Lepuschitz, S., et al., (2019). Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian lake frequently associated with cases of human infection. Frontiers in microbiology, 1: p. 2600
[12] Canals, A., et al., (2023). ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proceedings of the National Academy of Sciences, 120(29): p. e2304378120.
[13] Singh, D., S.R. Isac, and R. Colwell.,(2002). Development of a hexaplex PCR assay for rapid detection of virulence and regulatory genes in Vibrio cholerae and Vibrio mimicus. Journal of clinical microbiology, 40(11): p. 4321-4324.
[14] O'shea, Y.A., et al., (2004). Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. Journal of clinical microbiology, 42(10): p. 4657-4671.
[15] Faruque, S.M., et al., (2004). Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proceedings of the National Academy of Sciences, 101(7): p. 2123-2128. [16] Bakhshi, B., et al., (2009). A molecular survey on virulence associated genotypes of non-O1 non-O139 Vibrio cholerae in aquatic environment of Tehran, Iran. Water research, 43(5): p. 1441-1447.
[17] HUQ, A., (1996).Vibrios in the marine and estuarine environment: tracking Vibrio cholerae. Ecosyst Health, 2: p. 198-214.
[18] Ceccarelli, D., et al., (2015). Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Applied and Environmental Microbiology, 81(6): p. 1909-1918.
[19] Shah, M.M., et al., (2023). Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016. Microbiology Spectrum, p: e04140-22. [20] Mohebi, S., R. Saboorian, and S. Shams., (2022). The first report of Vibrio fluvialis isolated from a clinical sample in Iran. Iranian Journal of Microbiology, 14(5): p. 677.
[21] Noguerola, I. and A. Blanch., (2008). Identification of Vibrio spp. with a set of dichotomous keys. Journal of applied microbiology, 105 (1): p. 175-185.
[22] Ausubel, F.M., et al., (1992). Short protocols in molecular biology. New York, 275: p. 28764-28773.
[23] Huq, A., et al., (2012). Detection, isolation, and identification of Vibrio cholerae from the environment. Current protocols in microbiology, 26(1): p. 6A. 5.1-6A. 5.51.
[24] Keasler, S. and R. Hall, (1993). Detecting and biotyping Vibrio cholerae O1 with multiplex polymerase chain reaction.
[25] Haley, B.J., et al., (2012). Vibrio cholerae in a historically cholera‐free country. Environmental microbiology reports, 4(4): p. 381-389.
[26] Rivera, I.N., et al., (2012). Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Applied and environmental microbiology, 67(6): p. 2421-2429.
[27] Lewis, I. and S. James, (2022). Performance standards for antimicrobial susceptibility testing. (No Title).
[28] Yasaie, S., et al., (2024). Evaluation of the detection of diarrhoea-associated RNA viruses in immunocompromised children in Iran. Infection Prevention in Practice, (3)6: p. 100370.
[29] Moballegh Naseri, M., et al., (2020). In silico analysis of epitope-based CadF vaccine design against Campylobacter jejuni. BMC research notes, 13(1): p. 1-6.
[30] Shams, S., B. Bakhshi, and T. Tohidi Moghadam, (2016). In Silico Analysis of the cadF Gene and Development of a Duplex Polymerase Chain Reaction for Species-Specific Identification of Campylobacter jejuni and Campylobacter coli. Jundishapur J Microbiol, 9(2): p. e29645.
[31] Shams, S., et al., (2021). Tropheryma whipplei intestinal colonization in immunocompromised children in Iran: a preliminary study. Future Microbiology, 16(15): p. 1161-1166.
[32] Shams, S., et al., (2019). A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. Journal of nanobiotechnology, 17(1): p. 1-13.
[33] Shams, S., B. Bakhshi, and B. Nikmanesh, (2016). Designing a rapid and accurate method for transportation and culture of the Campylobacter jejuni and Campylobacter coli-fastidious bacteria in the children with bacterial gastrointestinal symptoms. Koomesh, 18(1).
[34] Bonaiuto, E., et al., (2018). Versatile nano-platform for tailored immuno-magnetic carriers. Anal Bioanal Chem, 410(29): p. 7575-7589.
[35] Shams, S., et al., (2022). Prevalence of enteric adenovirus and co-infection with rotavirus in children under 15 years of age with gastroenteritis in Qom, Iran. Gastroenterology and Hepatology From Bed to Bench, 15(3): p. 256.
[36] Kaakoush, N.O., et al., (2015). Global epidemiology of Campylobacter infection. Clinical microbiology reviews, 28(3): p. 687-720.
[37] Ferdous, J., et al., (2018). A comparative analysis of Vibrio cholerae contamination in point-of-drinking and source water in a low-income urban community, Bangladesh. Frontiers in Microbiology, 9: p. 489.
[38] Lipp, E.K., A. Huq, and R.R., (2002). Colwell, Effects of global climate on infectious disease: the cholera model. Clinical microbiology reviews, 15(4): p. 757-770.
[39] Farhadkhani, M., et al., (2020). Campylobacter risk for the consumers of wastewater-irrigated vegetables based on field experiments. Chemosphere, 251: p. 126408.
[40] Grim, C.J., et al., (2010). Detection of toxigenic Vibrio cholerae O1 in freshwater lakes of the former Soviet Republic of Georgia. Environmental Microbiology Reports, 2(1): p. 2-6.
[41] Martins, M.T., et al., (1991). Occurence of V. cholerae Non-Toxigenic in Wastewaters from São Paulo, Brazil. Water Science and Technology, 24(2): p. 363.
[42] Momtaz, H., et al., (2013). Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran. BMC public health, 13: p. 1-7.
[43] Fraga, S.G., et al., (2007). Environment and virulence factors of Vibrio cholerae strains isolated in Argentina. Journal of applied microbiology, 103(6): p. 2448-2456.
[44] Azimirad, M., et al., (2021). Microbiological survey and occurrence of bacterial foodborne pathogens in raw and ready-to-eat green leafy vegetables marketed in Tehran, Iran. International Journal of Hygiene and Environmental Health, 237: p. 113824.
[45] Budiman, A., K. Kurnia, and D.E. Waturangi., (2022). Prevalence and molecular characterization of Vibrio cholerae from fruits and salad vegetables sold in Jakarta, Indonesia, using most probable number and PCR. BMC Research Notes, 15(1): p. 1-9.
[46] Hounmanou, Y.M.G., et al., (2019). Surveillance and genomics of toxigenic Vibrio cholerae O1 from fish, phytoplankton and water in Lake Victoria, Tanzania. Frontiers in Microbiology, 10: p. 901.
[47] Khazaei, H.-A., et al., (2005). A six-year study on Vibrio cholerae in southeastern Iran. Jpn J Infect Dis, 58(1): p. 8-10.
[48] Moradi, G., et al., (2016). A cholera outbreak in Alborz Province, Iran: a matched case-control study. Epidemiology and health, 38.
[49] Daboul, J., et al., (2020). Characterization of Vibrio cholerae isolates from freshwater sources in northwest Ohio. PLoS One, 15(9): p. e0238438.
[50] Ottaviani, D., et al., (2018). Molecular characterization and drug susceptibility of non-O1/O139 V. cholerae strains of seafood, environmental and clinical origin, Italy. Food microbiology, 72: p. 82-88.
[51] Schwartz, K., et al., (2019). Environmental and clinical strains of non-O1, non-O139 Vibrio cholerae from Germany possess similar virulence gene profiles. Frontiers in microbiology, 10: p. 733.
[52] Sharma, A. and A.N. Chaturvedi., (2006). Prevalence of virulence genes (ctxA, stn, OmpW and tcpA) among non-O1Vibrio cholerae isolated from fresh water environment. International journal of hygiene and environmental health, 209(6) : p. 521-526.
[53] Mavhungu, M., T.O. Digban, and U.U. Nwodo., (2023). Incidence and Virulence Factor Profiling of Vibrio Species: A Study on Hospital and Community Wastewater Effluents. Microorganisms, 11(10): p. 2449.
[54] Luo, Y., et al., (2021). Population structure and multidrug resistance of non-O1/non-O139 Vibrio cholerae in freshwater rivers in Zhejiang, China. Microbial ecology, 1: p. 1-15.
[55] Ghorbanalizadgan, M., et al., (2019). Pulsed-field gel electrophoresis fingerprinting of Campylobacter jejuni and Campylobacter coli strains isolated from clinical specimens, Iran. International microbiology: the official journal of the Spanish Society for Microbiology, 22(3): p. 391.
[56] Shams, S., et al., (2018). Imipenem resistance in clinical Escherichia coli from Qom, Iran. BMC Res Notes, 1 (1): p. 314.
[57] Chen, D., et al., (2021). First experimental evidence for the presence of potentially toxic Vibrio cholerae in snails, and virulence, cross-resistance and genetic diversity of the bacterium in 36 species of aquatic food animals. Antibiotics, 10 (4): p. 412.