بررسی اثر بازدارندگی عصاره پوست انار بر تشکیل محصولات نهایی گلیکاسیون پیشرفته در سامانه های مدل

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی دانشگاه تربیت مدرس
2 استاد گروه علوم و مهندسی صنایع غذایی، دانشگاه تربیت مدرس، ص پ 336-14115
چکیده
محصولات نهایی گلیکاسیون پیشرفته (AGEs)، گروهی از ترکیبات مضر هستند که در حین واکنش میلارد توسط یک سری واکنش‌‌های پیچیده تولید می‌‌شوند. در مطالعه حاضر از روش آماری سطح پاسخ برای بررسی اثر دو نوع پروتئین ((پروتئین آب پنیر (0/2، 5/3 و 0/5 درصد وزنی/حجمی) و کازئین (0/1، 0/2 و 0/3 درصد وزنی/حجمی))، سه نوع قند گلوکز و فروکتوز (2/0، 6/0 و 0/1 مولار) و لاکتوز (1/0، 3/0 و 5/0 مولار) و عصاره آبی پوست انار (0/250، 0/500 و 0/750 قسمت در میلیون) و بر بازداری از تشکیل محصولات نهایی گلیکاسیون پیشرفته با خاصیت فلوئورسانس استفاده شد. بر اساس نتایج این مطالعه نوع پروتئین، نوع قند و غلظت عصاره فنولی پوست انار بر ممانعت از تشکیل AGEs موثر بود و عصاره پوست انار (به ویژه در غلظت 750 قسمت در میلیون) توانست به خوبی از واکنش گلیکاسیون جلوگیری نماید. نتایج نشان داد که نوع پروتئین و غلظت آن بر تشکیل این محصولات موثر است. قدرت بازداری عصاره در سامانه مدل حاوی کازئین کمتر از سامانه حاوی پروتئین آب پنیر بود و در کل با افزایش غلظت پروتئین قدرت بازدارندگی کاهش یافت. با تغییر نوع قند موجود در سامانه مدل، رفتار بازداری عصاره پوست انار پیچیده بود و در برخی موارد اثر افزایشی، کاهشی یا بی اثر نشان داد. با بررسی‌های کامل تر می‌توان پیشنهاد داد تا از این عصاره در فرمولاسیون مواد غذایی به ویژه در فرمولاسیون غذاهای کودک استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the inhibitory effect of pomegranate peel extract on the formation of advanced glycation end products (AGEs) in the model systems

نویسندگان English

Aghdas Taslimi 1
Mohsen Barzegar 2
Mohammad Ali Sahari 2
Mohammad Hossein Azizi 2
1 Dept. Food Sci. Technol., Tarbiat Modares Univ., P.O. Bix 14115-336
2 Dept. Food Sci. Technol., Tarbiat Modares Univ., P.O. Box 14115-336
چکیده English

Advanced glycation end products (AGEs) are a group of compounds formed during the Maillard reaction, which can have adverse effects. This study aims to investigate the formation of fluorescent AGEs using the response surface method (RSM). Factors such as protein type ((whey protein 2.0, 3.5, and 5.0 %w/v) and casein (1.0, 2.0, and 3.0 %w/v)), three types sugar ((glucose and frouctose (0.2, 0.6, and 1.0 M) and lactose (0.1, 0.3, and 0.5 M)), and pomegranate peel (PPE) concentration (250.0, 500.0, and 750.0 ppm) along with their interactions are analyzed. The results of this study showed that, the type of protein, type of sugar, and concentration of phenolic extract from pomegranate peel were effective in preventing the formation of AGEs, and the pomegranate peel extract (specially at 750.0 ppm) was able to effectively prevent glycation reaction. According to the results, protein type and concentration significantly influence AGEs formation. The inhibitory activity of the extract in the model system containing casein was lower than the system containing whey protein, and overall, the inhibitory power decreased with an increase in protein concentration. By changing the type of sugar present in the model system, the inhibitory behavior of the pomegranate peel extract became complex, showing increased, decreased, or no effect in some cases. Further investigations can suggest the use of this extract, especially in the formulation of food products, including infant formulas.

کلیدواژه‌ها English

Advanced glycation end products (AGEs)
Whey protein
Pomegranate peel extract
Casein
[1] Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S., Nielsen, J, & Dragsted, L. O. (2013). Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology, 60, 10- 37.
[2] Zhang, G., Huang, G., Xiao, L., & Mitchell, A. E. (2011). Determination of advanced glycation end products by LC-MS/MS in raw and roasted almonds (Prunus dulcis). Journal of Agricultural and Food Chemistry, 59(22), 12037-12046.
[3] Singh, V. P., Bali, A., Nirmal Singh, N., & Jaggi. A. S. (2014). Advanced glycation end products and diabetic complications. Korean Journal of Physiological Pharmacology, 18 (1), 1- 14.
[4] Davis, K. E., Prasad, C., Vijayagopal, P., Juma, S., & Imrhan, V. (2016). Advanced glycation end products, inflammation, and chronic metabolic diseases: Links in a chain?. Critical Reviews in Food Science and Nutrition, 56(6), 989-998.
[5] Wang, Z., Jiang, Y., Liu, N., Ren, L., Zhu, Y., An, Y., & Chen, D. (2012). Advanced glycation end-product Nɛ-carboxymethyl-lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis, 221(2), 387-396.
[6] Delgado-Andrade, C., & Fogliano, V. (2018). Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: physiological consequences of their intake. Annual Review of Food Science and Technology, 9, 271- 291.
[7] Dariya, B. & Nagaraju, G. P. (2020). Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discavery Today, 25 (9), 1614- 1623.
[8] Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911-916.
[9] Bombo Trevisan, A. J., de Almeida Lima, D., Sampaio, G. R., Manólio Soares, R. A., & Markowicz Bastos, D. H. (2016). Influence of home cooking conditions on Maillard reaction products in beef. Food Chemistry, 196, 161- 169.
[10] Wu, Q., Chen, H., Lv, Z., Li, S., Hu, B., Guan, Y., & Sun, Z. (2013). Oligomeric procyanidins of lotus seedpod inhibits the formation of advanced glycation end-products by scavenging reactive carbonyls. Food Chemistry, 138, 1493-1502.
[11] Babu, P. V. A., Sabitha, K. E., & Shyamaladevi, C. S. (2008). Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 46(1), 280-285.
[12] Peng, X., Ma, J., Chen, F., & Wang, M. (2011). Naturally occurring inhibitors against the formation of advanced glycation end-products. Food & Function, 2(6), 289- 301.
[13] Reddy, V. P., & Beyaz, A. (2006). Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discovery Today, 11(13-14), 646- 654.
[14] Navarro, M., Morales, F. J., & Ramos, S. (2017). Olive leaf extract concentrated in hydroxytyrosol attenuates protein carbonylation and the formation of advanced glycation end products in a hepatic cell line (HepG2). Food & Function, 8(3), 944-953.
[15] Anandan, S., Mahadevamurthy, M., Ansari, M. A., Alzohairy, M. A., Alomary, M. N., Farha Siraj, S., & Urooj, A. (2019). Biosynthesized ZnO-NPs from Morus indica attenuates methylglyoxal-induced protein glycation and RBC damage: In-vitro, in-vivo and molecular docking study. Biomolecules, 9(12), 882.
[16] Starowicz, M., & Zieliński, H. (2019). Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants, 8(4), 100.
[17] Guo, W., Zhou, Q., Jia, Y., & Xu, J. (2019). Increased levels of glycated hemoglobin A1c and iron deficiency anemia: a review. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 8371.
[18] Khedher, M. R. B., Hafsa, J., Haddad, M., & Hammami, M. (2020). Inhibition of Protein Glycation by Combined Antioxidant and Antiglycation Constituents from a Phenolic Fraction of Sage (Salvia officinalis L.). Plant Foods for Human Nutrition, 75(4), 505-511.
[19] Yasoubi, P., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2007). Total phenolic contents and antioxidant activity of pomegranate (Punica granatum L.) peel extracts. Journal of Agricultural Science and Technology, 9, 35- 42.
[20] Aliyari, P., Bakhshi Kazaj, F., Barzegar, M., Ahmadi Gavlighi, H. (2020). Production of functional sausage using pomegranate peel and pistachio green hull extracts as natural preservatives. Journal of Agricultural Science and Technology, 9, 35- 42.
[21] González-Molina, E., Moreno, D. A., & García-Viguera, C. (2009). A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chemistry, 115(4), 1364- 1372.
[22] Noda, Y., & Peterson, D. G. (2007). Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems. Journal of Agricultural and Food Chemistry, 55(9), 3686- 3691.
[23] Wei, Q., Liu, T., & Sun, D. W. (2018). Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology, 82, 32-45.
[24] Li, J. X., Fang, H. J., Hu, H. X., & Li, L. X. (2011). Recent advances in research on dietary advanced glycation end products. Food Science, 32(21), 293- 297.
[25] Shpigelman, A., Zisapel, A., Cohen, Y., & Livney, Y. D. (2013). Mechanisms of saccharide protection against epigallocatechin-3-gallate deterioration in aqueous solutions. Food Chemistry, 139(1-4), 1105- 1112.
[26] Dorsey, P. G., & Greenspan, P. (2014). Inhibition of nonenzymatic protein glycation by pomegranate and other fruit juices. Journal of Medicinal Food, 17(4), 447-454.
[27] Liu, W., Ma, H., Frost, L., Yuan, T., Dain, J. A., & Seeram, N. P. (2014). Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food & Function, 5(11), 2996- 3004.