اثر نگهداری ضایعات قزل آلای رنگین کمان (Oncorhynchus mykiss) بر ترکیب اسید های چرب، اکسایش، و ارزش تغذیه ای روغن حاصل از هیدرولیز

نویسندگان
1 گروه پاتوبیولوژی و کنترل کیفی، پژوهشکده آرتمیا و آبزی پروری، دانشگاه ارومیه
2 گروه اکولوژی و مدیریت ذخایر آبزیان، پژوهشکده آرتمیا و آبزی پروری، دانشگاه ارومیه
چکیده
در این مطالعه، اثر نگهداری ضایعات فرآوری قزل آالی رنگین کمان در دمای 4 درجه سانتی گراد بر ارزش غذایی و ترکیب اسید های چرب روغن حاصل از هیدرولیز مورد بررسی قرار گرفت. اسید های چرب چند غیر اشباع )%39/97-43/70 ,PUFA )و پس از آن اسید های چرب تک غیر اشباع )%31/90-34/05 ,MUFA )و اشباع )%19/27-22/59 ,SAF ) بیشترین میزان اسید های چرب را بخود اختصاص داده بودند. اسید چرب لینولئیک )Cis6n18:2C)، واکسینیک )9n18:1C )و پالمیتیک )16:0C )نیز فراوانترین اسید های چرب روغن ضایعات بودند. شاخص هیپو/هیپرکلسترولمی )H/h )در روغن بین 4/23 الی 5/15 متغیر و بیشترین میزان مربوط به روز دوم نگهداری بوده است
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of storage of rainbow trout (Oncorhynchus mykiss) by-products on fatty acids composition, oxidation, and nutritional properties of hydrolyzed-derived oils

نویسندگان English

Seyyed Ahmad Mousavi 1
Mehdi Nikoo 1
Ali Haghi Vayghan 2
1 Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University
2 Department of Ecology & Aquatic Stocks Management, Artemia and Aquaculture Research Institute, Urmia University
چکیده English

The effects of storage of rainbow trout processing by-products at 4 ºC on fatty acid composition and nutritional values of hydrolyzed-derived oils were determined. Polyunsaturated fatty acids (PUFA, 39.97-43.70%) were the major fatty acids followed by monounsaturated (MUFA, 31.90-34.05%) and saturated (SFA, 19.27-22.59%) fatty acids. Among fatty acids, linoleic, cis vaccinic, and palmitic were the main fatty acids. N-6 fatty acids represented 34-38% while n-3 fatty acids were 4.5-6.6% of all fatty acids (P<0.05). Hypocholesterolemic/hypercholesterolemic ratio (h/H) index in oils was between 4.23 and 5.15. The highest value was found at day 2 while showed no changes among other storage times (P>0.05). Thrombogenic index (TI) at days 0 and 2 were the lowest among storage times while at days 5 it represented the highest value. However, the change was not significant (P>0.05). N-6/n-3 ratio ranged from 5.01 to 7.6. PUFA/SFA was between 1.77 and 2.29 and showed the highest value at day 2 while after 5 days significantly decreased (P<0.05). The highest fish lipid quality (FLQ) index was for fresh by-products (day 0) (P<0.05) and showed no differences from day 1 to 5 (P>0.05). Also, nutritive value index (NVI) ranged from 2.25 to 2.55 with no significant differences during storage (P>0.05). The sum of EPA and DHA was between 1.73 and 4.05% and decreased with increasing storage days (P<0.05). Polyene index (PI) decreased to the end of storage time up to 4 days compared with the fresh by-products and significantly decreased thereafter after 5 days (P<0.05). Results of the present study showed that fatty acid composition and nutritional quality of oils from hydrolysis-derived oils were influenced by the storage days to some degree.

کلیدواژه‌ها English

Fish processing by-products
Storage
Fatty acids
Nutritional Value
Oncorhynchus mykiss
[1] Wu, H.; Ghirmai, S.; Undeland, I. Stabilization of herring (Clupea harengus) by-products against lipid oxidation by rinsing and incubation with antioxidant solutions. Food Chemistry 2020, 316, 126337.
[2] Sarteshnizi, R.A.; Sahari, M.A.; Gavlighi, H.A.; Regenstein, J.M.; Nikoo, M. Antioxidant activity of Sind sardine hydrolysates with pistachio green hull (PGH) extracts. Food Bioscience 2019, 27, 37-45.
[3] Vázquez, J.A.; Sotelo, C.G.; Sanz, N.; Pérez-Martín, R.I.; Rodríguez-Amado, I.; Valcarcel, J. Valorization of aquaculture by-products of salmonids to produce enzymatic hydrolysates: Process optimization, chemical characterization and evaluation of bioactives. Marine Drugs 2019, 17, 676.
[4] Stevens, J.R.; Newton, R.W.; Tlusty, M.; Little, D.C. The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Marine Policy 2018, 90, 115-124.
[5] Kim, S.-K.; Mendis, E. Bioactive compounds from marine processing byproducts–a review. Food Research International 2006, 39, 383-393.
[6] Durand, R.; Pellerin, G.; Thibodeau, J.; Fraboulet, E.; Marette, A.; Bazinet, L. Screening for metabolic syndrome application of a herring by-product hydrolysate after its separation by electrodialysis with ultrafiltration membrane and identification of novel anti-inflammatory peptides. Separation and Purification Technology 2020, 235, 116205.
[7] Zheng, L.; Yu, H.; Wei, H.; Xing, Q.; Zou, Y.; Zhou, Y.; Peng, J. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in IPEC-J2 cells. Journal of Functional Foods 2018, 51, 104-112.
[8] Jacobsen, C.; Undeland, I.; Storrö, I.; Rustad, T.; Hedges, N.; Medina, I. Preventing lipid oxidation in seafood. Improving seafood products for the consumer 2008, 426-460.
[9] FAO. (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. FAO. https://doi.org/10.4060/ca9229en.
[10] Nguyen, E.; Jones, O.; Kim, Y.H.B.; San Martin-Gonzalez, F.; Liceaga, A.M. Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science 2017, 83, 317-331.
[11] Nikoo, M.; Benjakul, S.; Yasemi, M.; Gavlighi, H.A.; Xu, X. Hydrolysates from rainbow trout (Oncorhynchus mykiss) processing by-product with different pretreatments: Antioxidant activity and their effect on lipid and protein oxidation of raw fish emulsion. LWT – Food Science and Technology 2019, 108, 120-128.
[12] Nikoo, M.; Regenstein, J.M.; Noori, F.; Gheshlaghi, S.P. Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT – Food Science and Technology 2021, 140, 110702.
[13] Nikoo, M.; Xu, X.; Regenstein, J.M.; Noori, F. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. Food Bioscience 2021, 39, 100844.
[14] Miquel, M.; Browse, J. Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. Journal of Biological Chemistry 1992, 267, 1502-1509.
[15] Ulbricht, T.; Southgate, D. Coronary heart disease: seven dietary factors. The Lancet 1991, 338, 985-992.
[16] Gómez-Limia, L.; Cobas, N.; Franco, I.; Martínez-Suárez, S. Fatty acid profiles and lipid quality indices in canned European eels: Effects of processing steps, filling medium and storage. Food Research International 2020, 136, 109601.
[17] Mgbechidinma, C.L.; Zheng, G.; Baguya, E.B.; Zhou, H.; Okon, S.U.; Zhang, C. Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research 2023, 28.
[18] Santos-Silva, J.; Bessa, R.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science 2002, 77, 187-194.
[19] Matos, Â.P.; Matos, A.C.; Moecke, E.H.S. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian Journal of Food Technology 2019, 22.
[20] Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Melo Filho, A.B. Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry 2014, 160, 67-71.
[21] Šimat, V.; Vlahović, J.; Soldo, B.; Mekinić, I.G.; Čagalj, M.; Hamed, I.; Skroza, D. Production and characterization of crude oils from seafood processing by-products. Food Bioscience 2020, 33, 100484.
[22] Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. International Journal of Molecular Sciences 2020, 21, 5695.
[23] Dietschy, J.M. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. The Journal of Nutrition 1998, 128, 444S-448S.
[24] Liu, Y.; Ramakrishnan, V.V.; Dave, D. Lipid class and fatty acid composition of oil extracted from Atlantic salmon by-products under different optimization parameters of enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology 2020, 30, 101866.