تأثیر پلاسمای سرد بر اصلاح ویژگی‌های نشاسته‌های غلات

نویسندگان
1 دانشجوی کارشناسی ارشد گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران
2 استاد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران
چکیده
نشاسته‌های طبیعی به دلیل ماهیت غیر واکنشی و نامحلول بودن در آب سرد، کاربرد محدودی در صنایع غذایی دارند. نشاسته‌های طبیعی را می‌توان با روش‌های شیمیایی، فیزیکی و آنزیمی اصلاح کرد. پلاسمای سرد یکی از روش‌های فیزیکی اصلاح نشاسته است که در این مقاله موردبررسی قرار می‌گیرد. سیستم‌های تولید پلاسمای سرد به دودسته فشار پایین و فشار اتمسفری تقسیم‌بندی می‌گردند، ساختار هر سیستم موردبررسی قرارگرفته و اثرات پلاسمای سرد در فشار اتمسفر بر خواص عملکردی، حرارتی، مولکولی، مورفولوژیکی و فیزیکوشیمیایی نشاسته‌های مختلف که موردمطالعه محققان مختلف قرارگرفته به بحث گذاشته می‌شوند. تغییر در خواص نشاسته اصلاح‌شده با پلاسما دی الکتریک عمدتاً به دلیل دپلیمریزاسیون و اتصال متقاطع زنجیره‌های جانبی آمیلوز و آمیلوپکتین است. پس از تیمار پلاسما دی الکتریک، وزن مولکولی، ویسکوزیته و دمای ژلاتینه شدن کاهش می‌یابد. حکاکی پلاسما انرژی سطحی و آب‌دوستی گرانول‌های نشاسته را افزایش می‌دهد. می‌توان نتیجه گرفت که پلاسمای سرد به‌عنوان فناوری جایگزین برای اصلاح خواص نشاسته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The significant effect of cold plasma on the modification of the characteristics of cereal starches

نویسندگان English

Mohammadkazem heydarian 1
Alireza Heydarian 1
Seyed Ali Mortazavi 2
1 1. MSc, Department of Food Science, Faculty of Agricultural Engineering and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
2 2. Professor, Department of Food Science, Faculty of Agricultural Engineering and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Native starches have limited use in the food industry owing to their insolubility in cold water and lack of reactivity. Native starches are susceptible to chemical, physical, and enzymatic modification. This article examines cold plasma as one of the physical mechanisms of starch modification. The structure of each system is analyzed, and the effects of cold plasma at atmospheric pressure on the functional, thermal, molecular, morphological, and physicochemical aspects of various starches researched by different researchers are described. Changes in the characteristics of DBD plasma-modified starch are primarily caused by the depolymerization and cross-linking of amylose and amylopectin side chains. The molecular weight, viscosity, and gelatinization temperature decrease after DBD plasma treatment. The plasma etching of starch granules improves their surface energy and hydrophilicity. Cold plasma is an alternate approach for changing starch characteristics; it may be inferred.

کلیدواژه‌ها English

Starch
cold plasma
Modification
depolymerization
[1] Hizukuri, S., et al., Multi-branched nature of amylose and the action of debranching enzymes. Carbohydrate Research, 1981. 94(2): p. 205-213.
[2] Hizukuri, S., T. Kaneko, and Y. Takeda, Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochimica et Biophysica Acta (BBA)-General Subjects, 1983. 760(1): p. 188-191.
[3] Pérez, S. and E. Bertoft, The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch‐Stärke, 2010. 62(8): p. 389-420.
[4] Vamadevan, V. and E. Bertoft, Structure‐function relationships of starch components. Starch‐Stärke, 2015. 67(1-2): p. 55-68.
[5] Mason, W., Starch. 2009, Academic Press Cambridge, UK:.
[6] Glittenberg, D., Starch-based biopolymers in paper, corrugating, and other industrial applications. 2012.
[7] Majzoobi, M. and A. Farahnaky, Granular cold-water swelling starch; properties, preparation and applications, a review. Food hydrocolloids, 2021. 111: p. 106393.
[8] Laovachirasuwan, P., et al., The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids and Surfaces B: Biointerfaces, 2010. 78(1): p. 30-35.
[9] Ai, Y. and J.l. Jane, Gelatinization and rheological properties of starch. Starch‐Stärke, 2015. 67(3-4): p. 213-224.
[10] Costa, K., et al., Rheological properties of fermented rice extract with probiotic bacteria and different concentrations of waxy maize starch. LWT-Food Science and Technology, 2016. 72: p. 71-77.
[11] Hu, A., Y. Li, and J. Zheng, Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt, 2019. 106: p. 254-262.
[12] Thirumdas, R., D. Kadam, and U. Annapure, Cold plasma: An alternative technology for the starch modification. Food Biophysics, 2017. 12: p. 129-139.
[13] Neelam, K., S. Vijay, and S. Lalit, Various techniques for the modification of starch and the applications of its derivatives. International research journal of pharmacy, 2012. 3(5): p. 25-31.
[14] Nabeshima, E. and M. Grossmann, Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate. Carbohydrate Polymers, 2001. 45(4): p. 347-353.
[15] BeMiller, J.N., Carbohydrate chemistry for food scientists. 2018: Elsevier.
[16] Chen, L., et al., Effects of nano-TiO2 on bonding performance, structure stability and film-forming properties of starch-g-VAc based wood adhesive. Carbohydrate polymers, 2018. 200: p. 477-486.
[17] Chaiwat, W., et al., Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. Food and Bioprocess Technology, 2016. 9: p. 1125-1134.
[18] Gu, Z., B. Chen, and Y. Tian, Highly branched corn starch: Preparation, encapsulation, and release of ascorbic acid. Food Chemistry, 2021. 343: p. 128485.
[19] Chiu, C.-w. and D. Solarek, Modification of starches, in Starch. 2009, Elsevier. p. 629-655.
[20] Hansen, M.R., et al., Gel texture and chain structure of amylomaltase-modified starches compared to gelatin. Food Hydrocolloids, 2008. 22(8): p. 1551-1566.
[21] Ao, Z., et al., Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. Journal of agricultural and food chemistry, 2007. 55(11): p. 4540-4547.
[22] Ashogbon, A.O. and E.T. Akintayo, Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch‐Stärke, 2014. 66(1-2): p. 41-57.
[23] Guo, Z., et al., Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chemistry, 2015. 186: p. 223-230.
[24] Han, Z., et al., Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. Journal of Food Engineering, 2009. 93(3): p. 318-323.
[25]Luo, Z., et al., Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch‐Stärke, 2008. 60(11): p. 646-653.
[26] Kaur, H. and B.S. Gill, Effect of high-intensity ultrasound treatment on nutritional, rheological and structural properties of starches obtained from different cereals. International journal of biological macromolecules, 2019. 126: p. 367-375.
[27] Chan, H.-T., R. Bhat, and A.A. Karim, Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chemistry, 2010. 120(3): p. 703-709.
[28] Sujka, M. and J. Jamroz, Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 2013. 31(2): p. 413-419.
[29] Zia-ud-Din, H. Xiong, and P. Fei, Physical and chemical modification of starches: A review. Critical reviews in food science and nutrition, 2017. 57(12): p. 2691-2705.
[30] Zhu, F., Plasma modification of starch. Food Chemistry, 2017. 232: p. 476-486.
[31] Daguenet, C., W. CROOKES.-On heat conduction in highly rarefied air (Conductibilité calorifique dans l'air fortement raréfié); Nature, 6 janvier 1881. J. Phys. Theor. Appl., 1882. 1(1): p. 53-54.
[32] Misra, N., et al., Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 2011. 3: p. 159-170.
[33] Moreau, M., N. Orange, and M. Feuilloley, Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology advances, 2008. 26(6): p. 610-617.
[34] Rossi, F. and O. Kylián, Sterilization and decontamination of surfaces by plasma discharges, in Sterilisation of Biomaterials and Medical Devices. 2012, Elsevier. p. 117-150.
[35] Snoeckx, R. and A. Bogaerts, Plasma technology–a novel solution for CO 2 conversion? Chemical Society Reviews, 2017. 46(19): p. 5805-5863.
[36] Liao, X., et al., Cold plasma–based hurdle interventions: new strategies for improving food safety. Food Engineering Reviews, 2020. 12: p. 321-332.
[37] Ebnesajjad, S. and C. Ebnesajjad, Plasma treatment of polymeric materials. Surface treatment of materials for adhesive bonding, 2014: p. 227-269.
[38] Roy Choudhury, A., Various ecofriendly finishes. Principles of textile finishing. Woodhead Publishing, 2017: p. 467-525.
[39] Thornhill, W., The $ Z $-Pinch Morphology of Supernova 1987A and Electric Stars. IEEE transactions on plasma science, 2007. 35(4): p. 832-844.
[40] Vaideki, K., Plasma technology for antimicrobial textiles, in Antimicrobial textiles. 2016, Elsevier. p. 73-86.
[41] Thirumdas, R., et al., Functional and rheological properties of cold plasma treated rice starch. Carbohydrate polymers, 2017. 157: p. 1723-1731.
[42] Wilczek, S., et al., Electron dynamics in low pressure capacitively coupled radio frequency discharges. Journal of Applied Physics, 2020. 127(18): p. 181101.
[43] Braithwaite, N. and P. Chabert, Physics of radio-frequency plasmas. 2011: Cambridge University Press.
[44] Laroque, D.A., et al., Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 2022. 312: p. 110748.
[45] Thomas, M. and K.L. Mittal, Atmospheric pressure plasma treatment of polymers: relevance to adhesion. 2013: John Wiley & Sons.
[46] Yet-Pole, I., et al., Construction of a low-pressure microwave plasma reactor and its application in the treatment of volatile organic compounds. Environmental science & technology, 2004. 38(13): p. 3785-3791.
[47] Weltmann, K.D., et al., Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contributions to plasma physics, 2009. 49.
[48] Surowsky, B., et al., Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International journal of food microbiology, 2014. 174: p. 63-71.
[49] Kovačević, D.B., et al., Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry, 2016. 212: p. 323-331.
[50] Iqdiam, B.M., et al., Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. Journal of Food Processing and Preservation, 2020. 44(1): p. e14305.
[51] Ekezie, F.-G.C., D.-W. Sun, and J.-H. Cheng, A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in food science & technology, 2017. 69: p. 46-58.
[52] Moiseev, T., et al., Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Science and Technology, 2014. 23(6): p. 065033.
[53] Brandenburg, R., Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 2017. 26(5): p. 053001.
[54] Turner, M., Chapter 2-Physics of Cold Plasma in Cold Plasma in Food and Agriculture (eds. Misra, NN, Schlüter, O. & Cullen, PJ) 17–51. 2016, Academic Press.
[55] Kim, S.J., et al., Characterization of atmospheric pressure microplasma jet source and its application to bacterial inactivation. Plasma Processes and Polymers, 2009. 6(10): p. 676-685.
[56] Park, B.J., et al., Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Physics of Plasmas, 2003. 10(11): p. 4539-4544.
[57] Aditya, S., et al., Enhancing the properties of eggshell powder by cold plasma for improved calcium fortification in black coffee. Journal of Food Process Engineering, 2020. 43(8): p. e13450.
[58] Song, J., et al., Effects on surface and physicochemical properties of dielectric barrier discharge plasma‐treated whey protein concentrate/wheat cross‐linked starch composite film. Journal of food science, 2019. 84(2): p. 268-275.
[59] Mehr, H.M. and A. Koocheki, Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocolloids, 2020. 106: p. 105899.
[60] Bu, F., et al., Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry, 2022. 371: p. 131135.
[61] Amini, M. and M. Ghoranneviss, Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. Lwt, 2016. 73: p. 178-184.
[62] Charoux, C.M., et al., Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. Lwt, 2020. 118: p. 108716.
[63] Zehra, N., T.M. Ali, and A. Hasnain, Comparative study on citric acid modified instant starches (alcoholic alkaline treated) isolated from white sorghum and corn grains. International journal of biological macromolecules, 2020. 150: p. 1331-1341.
[64] Wrobel, A., B. Lamontagne, and M. Wertheimer, Large-area microwave and radiofrequency plasma etching of polymers. Plasma chemistry and plasma processing, 1988. 8: p. 315-329.
[65] Warren, F.J., M.J. Gidley, and B.M. Flanagan, Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydrate polymers, 2016. 139: p. 35-42.
[66] Bello-Perez, L.A., et al., Effect of storage time on the retrogradation of banana starch extrudate. Journal of agricultural and food chemistry, 2005. 53(4): p. 1081-1086.
[67] Zhou, Y., et al., Effect of an atmospheric pressure plasma jet on the structure and physicochemical properties of waxy and normal maize starch. Polymers, 2018. 11(1): p. 8.
[68] Yan, S.L., et al., Improved solubility of banana starch by dielectric barrier discharge plasma treatment. International Journal of Food Science & Technology, 2020. 55(2): p. 641-648.
[69] Sun, X., et al., Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments. LWT, 2022. 153: p. 112483.
[70] Gao, S., et al., The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. International Journal of Biological Macromolecules, 2019. 138: p. 819-830.
[71] Bie, P., et al., Supramolecular structure and thermal behavior of cassava starch treated by oxygen and helium glow-plasmas. Innovative Food Science & Emerging Technologies, 2016. 34: p. 336-343.
[72] Zhang, B., et al., The influence of repeated versus continuous dry-heating on the performance of wheat starch with different amylose content. LWT, 2021. 136: p. 110380.
[73] Pankaj, S.K., et al., High‐voltage atmospheric cold plasma treatment of different types of starch films. Starch‐Stärke, 2017. 69(11-12): p. 1700009.
[74] Ge, X., et al., The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food chemistry, 2021. 349: p. 129159.
[75] Guo, Z., et al., Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry, 2022. 370: p. 130992.
[76] Yan, Y., et al., Influence of atmospheric pressure plasma jet on the structure of microcrystalline starch with different relative crystallinity. International Journal of Food Science & Technology, 2019. 54(2): p. 567-575.
[77] Zhang, B., et al., Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids, 2015. 50: p. 228-236.
[78] Wongsagonsup, R., et al., Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. Carbohydrate polymers, 2014. 102: p. 790-798.
[79] Vamadevan, V., E. Bertoft, and K. Seetharaman, On the importance of organization of glucan chains on thermal properties of starch. Carbohydrate polymers, 2013. 92(2): p. 1653-1659.
[80] Zou, J.-J., C.-J. Liu, and B. Eliasson, Modification of starch by glow discharge plasma. Carbohydrate polymers, 2004. 55(1): p. 23-26.
[81] Polnaya, F., D. Marseno, and M. Cahyanto, Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. International Food Research Journal, 2013. 20(4).
[82] Juhász, R. and A. Salgó, Pasting behavior of amylose, amylopectin and their mixtures as determined by RVA curves and first derivatives. Starch‐Stärke, 2008. 60(2): p. 70-78.
[83] Wu, T.-Y., N.-N. Sun, and C.-F. Chau, Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. journal of food and drug analysis, 2018. 26(1): p. 244-251.
[84] Chen, H.H., Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food and bioprocess technology, 2014. 7: p. 2484-2491.
[85] Kaveh, Z., et al., Effect of different alcoholic-alkaline treatments on physical and mucoadhesive properties of tapioca starch. International journal of biological macromolecules, 2020. 153: p. 1005-1015.
[86] Wang, S. and L. Copeland, Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review. Food & function, 2013. 4(11): p. 1564-1580.
[87] Zhong, Y., et al., Microwave pretreatment promotes the annealing modification of rice starch. Food chemistry, 2020. 304: p. 125432.