اثر فیلم خوراکی ضدباکتری کازئینات‌ سدیم- نانوکریستال سلولز حاوی سلول و سوپرناتانت باکتری لاکتوباسیلوس رئوتری بر خواص کیفی کباب

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه زابل، ایران
چکیده
فیلم‌های خوراکی به دلیل سازگار بودن با محیط زیست می‌توانند جایگزین مناسبی برای بسته‌بندی‌های حاصل از مشتقات نفتی باشند. امروزه نگرانی مصرف‌کنندگان در مورد سمیت مواد نگهدارنده مصنوعی صنعت غذا را مجبور به یافتن منابع طبیعی آنتی‌اکسیدانی و ضد‌میکروبی کرده است. غذاهای آماده مصرف مانند کباب به عنوان مستعدترین موادغذایی برای رشد میکروب‌ها و شایع‌ترین عامل مسمومیت‌های غذایی شناخته شده‌اند. هدف از این تحقیق، بررسی اثر فیلم خوراکی ضد‌باکتری سدیم کازئینات ‌-نانوکریستال ‌سلولز حاوی سلول و سوپرناتانت باکتری لاکتوباسیلوس ‌رئوتری PTCC 1655 بر خصوصیات میکروبی و شیمیایی، کباب می‌باشد. بدین منظور، فیلم سدیم کازئینات-نانوکریستال سلولز با افزودنCfu/cm2 106 باکتری لاکتوباسیلوس ‌رئوتری PTCC 1655 و سوپرناتانت فاقد میکروب تهیه و بر روی فیلم‌های تهیه شده آزمون‌های ارزیابی خصوصیات مکانیکی، نفوذپذیری بخار آب، حلالیت و رطوبت بررسی گردید. فیلم‌های تهیه شده، بر روی کباب پیچیده شدند و هر چهار روز نمونه‌برداری انجام و آزمون‌های میکروبی (شمارش کلی میکروارگانیسم‌های قابل رویت، باکتری‌های سرمادوست و شمارش کپک و مخمر)، شیمیایی (pH، اسیدیته، اسید تیوباربیتوریک و بازهای نیتروژنی فرار، شاخص پراکسید) انجام شد. در بین تیمارهای مورد آزمون فیلم سدیم کازئینات-نانوسلولز محتوی لاکتوباسیلوس رئوتری موثرترین تیمار در افزایش ماندگاری نمونه‌ی کباب تیمار شده بود. از این رو، پیشنهاد می‌شود از فیلم سدیم کازئینات-نانوسلولز حاوی لاکتوباسیلوس رئوتری برای افزایش ماندگاری کباب استفاده شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of antibacterial edible film based on sodium caseinate-nanocrystal cellulose containing cells and supernatant of Lactobacillus reuteri on quality of kebab

نویسندگان English

Pouran Ghaderi
Mohammad Ali Najafi
Naser Soltani Tehrani
Department of Food Science and Technology, University of Zabol, Iran
چکیده English

Eible films due to the environmental compability can be a good alternative to packaging made from oil materials. Today, consumers' concerns about the toxicity of artificial preservatives in the food industry have led to the search for natural antioxidants and antimicrobials sources. Ready-to-eat foods such as kebabs are known as the most susceptible foods for the growth of microbes and cause food poisoning. The purpose of this study was to investigate the effect of an antimicrobial film of caseinates-cellulose nanocrystal containing supernatant and lactobacillus reuteri (PTCC 1655) on microbial and chemical properties of kebab. Therefore, a sodium caseinate-cellulose nanocrystal was prepared by adding 106 CFU/cm2 Lactobacillus reutri PTCC 1655 and germ-free supernatant, and mechanical properties evaluation tests, water vapor permeability, solubility and moisture were evaluated on the prepared films. The films were wrapped on kebab and each and every four days were monitored by microbial tests (total viable count, psychrophile bacteria and mold and yeast), chemical (pH, acidity, thiobarbituric acid and total volatile nitrogen, peroxide index). Among the treatments, the sodium caseinate -nanocellulose film containing Lactobacillus reuteri was the most effective treatment in increasing the shelf life of the kebab. As a result, it is suggested to use sodium caseinate-nanocellulose film containing Lactobacillus reuteri to increase the kebab shelflife.

کلیدواژه‌ها English

Edible film
Antimircobial
Kebab
Nanocrystal cellulose
Lactobacillus reuteri
[1] Karimzadeh, L., Koohdani, F., Mahmoudi, M., Safari, F., & Babaee, Z. (2010). Determination of nitrate and nitrite residues in smoked Caspian Kutum, Rutilus frisii kutum and Mullet, Liza auratus in the north of Iran. World J Fish & Marine Sci, 2(1), 62-65.
[2] Nachvak, S. M., Soleimani, D., Gholizadeh, S., & Paknahad, Z. (2021). Kebab, a delicious food, but contaminated with harmful compounds: A literature review. Journal of Isfahan Medical School, 39(626), 376-383.
[3] Mataragas, M., Skandamis, P. N., & Drosinos, E. H. (2008). Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations. International journal of food microbiology, 126(1-2), 1-12.
[4] Manheem, K., Adiamo, O., Roobab, U., Mohteshamuddin, K., Hassan, H. M., Nirmal, N. P., & Maqsood, S. (2023). A Comparative Study on Changes in Protein, Lipid and Meat-Quality Attributes of Camel Meat, Beef and Sheep Meat (Mutton) during Refrigerated Storage. Animals, 13(5), 904.
[5] Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
[6] De Lacey, A. L., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innovative Food Science & Emerging Technologies, 16, 277-282.
[7] Alzamora, S. M., Tapia, M. S., & López-Malo, A. (2000). Minimally processed fruits and vegetables: Fundamental aspects and applications. Aspen Publishers, Inc, 341-352.
[8] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2014). Antilisterial and physical properties of biopolymer films containing lactic acid bacteria. Food Control, 35(1), 200-206.
[9] Gennadios, A. (Ed.). (2002). Protein-based films and coatings. CRC press.
[10] Vojdani, F., & Torres, J. A. (1990). Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: Effect of fatty acids. Journal of Food Science, 55(3), 841-846.
[11] Beristain-Bauza, S. C., Mani-López, E., Palou, E., & López-Malo, A. (2016). Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control, 62, 44-51.
[12] Wang, Y., Cao, X., & Zhang, L. (2006). Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular bioscience, 6(7), 524-531.
[13] Pereda, M., Amica, G., Rácz, I., & Marcovich, N. E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 103(1), 76-83.
[14] Pinotti, A., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2007). Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids, 21(1), 66-72.
[15] Irissin-Mangata, J., Bauduin, G., Boutevin, B., & Gontard, N. (2001). New plasticizers for wheat gluten films. European polymer journal, 37(8), 1533-1541.
[16] Romano, N., Tavera-Quiroz, M. J., Bertola, N., Mobili, P., Pinotti, A., & Gómez-Zavaglia, A. (2014). Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Research International, 64, 560-566.
[17] Latou, E., Mexis, S. F., Badeka, A. V., Kontakos, S., & Kontominas, M. G. (2014). Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT-Food science and Technology, 55(1), 263-268.
[18] Ben-Gigirey, B., De Sousa, J. M. V. B., Villa, T. G., & Barros-Velazquez, J. (1998). Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. Journal of Food Protection, 61(5), 608-615.
[19] Petrou, S., Tsiraki, M., Giatrakou, V., & Savvaidis, I. N. (2012). Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. International journal of food microbiology, 156(3), 264-271.
[20] AOAC. (2002). Official Methods of Analysis of AOAC International. 17th edn. MD, Gaithersburg, USA Association of Official Analytical Chemistry.
[21] Namulema, A., Muyonga, J. H., & Kaaya, A. N. (1999). Quality deterioration in frozen Nile perch (Lates niloticus) stored at− 13 and− 27 C. Food research international, 32(2), 151-156.
[22] Goulas, A. E., & Kontominas, M. G. (2005). Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): biochemical and sensory attributes. Food chemistry, 93(3), 511-520.
[23] AOAC. 2005. Official Methods Of Analysis of AOAC International. 18th edn. MD, Gaithersburg, USA Association of Official Analytical Chemistry.
[24] Babji, Y., & Murthy, T. R. K. (2000). Effect of inoculation of mesophilic lactic acid bacteria on microbial and sensory changes of minced goat meat during storage under vacuum and subsequent aerobic storage. Meat science, 54(2), 197-202.
[25] Kanmani, P., & Lim, S. T. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food chemistry, 141(2), 1041-1049.
[26] Gómez-Estaca, J. (2010). A.; López-Caballero, ME; Gómez-Guillén, MC; Montero, P. Biodegradable gelatin chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27(7), 889-896.
[27] Hosseini, M. H., Razavi, S. H., & Mousavi, M. A. (2009). Antimicrobial, physical and mechanical properties of chitosan‐based films incorporated with thyme, clove and cinnamon essential oils. Journal of food processing and preservation, 33(6), 727-743.
[28] Chang, C. C., Trinh, B. M., & Mekonnen, T. H. (2021). Robust multiphase and multilayer starch/polymer (TPS/PBAT) film with simultaneous oxygen/moisture barrier properties. Journal of Colloid and Interface Science, 593, 290-303.
[29] Souza, B. W., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). The use of electric fields for edible coatings and films development and production: A review. Food Engineering Reviews, 2, 244-255.
[30] Sánchez-González, L., Saavedra, J. I. Q., & Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocolloids, 33(1), 92-98.
[31] Pruneda, E., Peralta‐Hernández, J. M., Esquivel, K., Lee, S. Y., Godínez, L. A., & Mendoza, S. (2008). Water vapor permeability, mechanical properties and antioxidant effect of mexican oregano–soy based edible films. Journal of food science, 73(6), C488-C493.
[32] Concha-Meyer, A., Schöbitz, R., Brito, C., & Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3-4), 485-489.
[33] Frinault, A., Gallant, D. J., Bouchet, B., & Dumont, J. P. (1997). Preparation of casein films by a modified wet spinning process. Journal of Food Science, 62(4), 744-747.
[34] Randazzo, W., Jiménez-Belenguer, A., Settanni, L., Perdones, A., Moschetti, M., Palazzolo, E., ... & Moschetti, G. (2016). Antilisterial effect of citrus essential oils and their performance in edible film formulations. Food Control, 59, 750-758.
[35] Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Research International, 43(10), 2402-2408.
[36] ICMSF (International Commission on Microbiological Specifications for Foods). (1986). Microorganisms in foods. 2. Sampling for microbiological analysis: Principles and scientific applications. 2rd Edition. Toronto: University of Toronto Press.
[37] Jeddi, S., Yeganeh, S., Jafarpour, S.A., & Naseri, M. (2019) Effect of Chitosan Coating incorporated with Marjoram Essential oil (Origanum vulgare L.) on Rainbow Trout (Oncorhynchus mykiss) Shelf life During Refrigerated Storage. Journal of Innovation in Food Science and Technology, 11(39), 21-36.
[38] Ranjbaryan, S., Rezazadeh, B. M., Almasi, H., & Amiri, S. (2018). Effect of sodium caseinate based nanocomposite active films and coatings containing cinnamon essential oil on the quality improving and shelf life extension of chicken fillets.
[39] Noshad, M., Alizadeh Behbahani, B., Jooyandeh, H., Rahmati‐Joneidabad, M., Hemmati Kaykha, M. E., & Ghodsi Sheikhjan, M. (2021). Utilization of Plantago major seed mucilage containing Citrus limon essential oil as an edible coating to improve shelf‐life of buffalo meat under refrigeration conditions. Food Science & Nutrition, 9(3), 1625-1639.
[40] Heydari, S., Jooyandeh, H., Alizadeh Behbahani, B., & Noshad, M. (2020). The impact of Qodume Shirazi seed mucilage‐based edible coating containing lavender essential oil on the quality enhancement and shelf life improvement of fresh ostrich meat: An experimental and modeling study. Food Science & Nutrition, 8(12), 6497-6512.
[41] Alizadeh Behbahani, B., Falah, F., Vasiee, A., & Tabatabaee Yazdi, F. (2021). Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food science & nutrition, 9(5), 2458-2467.
[42] Giménez, B., Roncalés, P., & Beltrán, J. A. (2002). Modified atmosphere packaging of filleted rainbow trout. Journal of the Science of Food and Agriculture, 82(10), 1154-1159.
[43] Fernández-Pan, I., Carrión-Granda, X., & Maté, J. I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control, 36(1), 69-75.
[44] Farahmandfar, R., & Ramezanizadeh, M. H. (2018). Oxidative stability of canola oil by Biarum bovei bioactive components during storage at ambient temperature. Food science & nutrition, 6(2), 342-347.
[45] Bazargani-Gilani, B., Aliakbarlu, J., & Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative food science & emerging technologies, 29, 280-287.
[46] Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678-687.
[47] Caprioli, I., O’Sullivan, M., & Monahan, F. J. (2009). Use of sodium caseinate/glycerol edible films to reduce lipid oxidation in sliced turkey meat. European Food Research and Technology, 228, 433-440.
[48] Özyurt, G., Kuley, E., Özkütük, S., & Özogul, F. (2009). Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food chemistry, 114(2), 505-510.
[49] Connell, J. J. (1990). Methods of assessing and selecting for quality. Control of fish quality, 2, 122-150.
[50] Muratore, G., & Licciardello, F. (2005). Effect of vacuum and modified atmosphere packaging on the shelf‐life of liquid‐smoked swordfish (Xiphias gladius) slices. Journal of Food Science, 70(5), C359-C363.
[51] Zolfaghari, M., Shabanpour, B., & Fallahzadeh, S. (2010). Comparison the effect of thyme, onion and ziziphora clinopodiodes extracts on shelf-life of rainbow trout (oncorhynchus mykiss). Iranian Food Science and Technology Research Journal, 6(2).
[52] Baixas-Nogueras, S., Bover-Cid, S., Veciana-Nogués, T., & Vidal-Carou, M. C. (2002). Chemical and sensory changes in Mediterranean hake (Merluccius merluccius) under refrigeration (6− 8 C) and stored in ice. Journal of Agricultural and Food Chemistry, 50(22), 6504-6510.
[53] Chouliara, I., Samelis, J., Kakouri, A., Badeka, A., Savvaidis, I. N., Riganakos, K., & Kontominas, M. G. (2006). Effect of irradiation of frozen meat/fat trimmings on microbiological and physicochemical quality attributes of dry fermented sausages. Meat science, 74(2), 303-311.
[54] Song, Y., Liu, L., Shen, H., You, J., & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food control, 22(3-4), 608-615.
[55] Opara, L. U., & Al-Jufiaili, S. M. (2006). Status of fisheries pot harvest industry in the Sultane of Oman: Part 2 Quantification of fresh fish losses. Journal of fisheries International, 1(2-4), 150-156.
[56] Bhadra, S., Dora, K. C., Sarkar, S., Chowdhury, S., & Ganguly, S. (2012). Effect of chitosan coating on shelf life of black tiger shrimp (Penaeus monodons). Exploratory Animal and Medical Research, 2(2), 155-165.