[1] Mohamadi, S., Rezaee, R., Hashemi, M., Kiani, B., Ghasemi, S., Alizadeh Sani, M., & Afshari, A. (2023). Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Staphylococcus aureus (VRSA), and Vancomycin-Resistant Enterococci (VRE) contamination of food samples in Iran: A systematic review and meta-analysis. Iranian Journal of Medical Microbiology, 17(2), 2-2.
[2] Mahasenan, K. V., Molina, R., Bouley, R., Batuecas, M. T., Fisher, J. F., Hermoso, J. A., ... & Mobashery, S. (2017). Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. Journal of the American Chemical Society, 139(5), 2102-2110.
[3] Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB life, 66(8), 572-577.
[4] Périchon, B., & Courvalin, P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy, 53(11), 4580-4587.
[5] Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), e00026-19.
[6] David MZ, Daum RS. Treatment of Staphylococcus aureus infections. Staphylococcus aureus: microbiology, pathology, immunology, therapy and prophylaxis. 2017:325-83.
[7] Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature reviews Drug discovery, 2(2), 114-122.
[8] Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14), 7602.
[9] Saipriya, K., Swathi, C. H., Ratnakar, K. S., & Sritharan, V. (2020). Quorum‐sensing system in Acinetobacter baumannii: a potential target for new drug development. Journal of applied microbiology, 128(1), 15-27.
[10] Ta, C. A. K., & Arnason, J. T. (2015). Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules, 21(1), 29.
[11] Moradi, F., & Hadi, N. (2021). Quorum-quenching activity of some Iranian medicinal plants. New Microbes and New Infections, 42, 100882.
[12] Bouyahya, A., Chamkhi, I., Balahbib, A., Rebezov, M., Shariati, M. A., Wilairatana, P., ... & El Omari, N. (2022). Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: a comprehensive review. Molecules, 27(5), 1484.
[13] Ehsani, A., Alizadeh. O., Hashemi, M., Afshari, A., Aminzare, M. (2017). Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Veterinary Research Forum, 8 (3), 223-229.
[14] Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., ... & Tang, Y. (2019). ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148-157.
[15] Ahmadi, E., Abdollahi, A., Najafipour, S., Meshkibaf, M. H., Fasihi Ramandi, M., Namdar, N., ... & Allahverdi, G. (2016). Surveying the effect of the phenol compounds on antibacterial activity of herbal extracts: in vitro assessment of herbal extracts in Fasa-Fars province. Journal of Fasa University of Medical Sciences, 6(2), 210-220.
[16] Arzhang, M., Dakhili, M., & Farahani, F. (2015). Investigation of Chemical Compounds and Anti-microbial Activity of Essential Oil of Melissa officinalis L. Qom University of Medical Sciences Journal, 9(1), 7-13.
[17] Alizade, O., Ehsani, A., Hashemi, M., Mohamadi, S., & Khalili, S. (2015). Comparative antibacterial effects of essential oils of Melissa officinalis and Deracocephalum moldavica L. against some pathogenic bacteria in food in vitro. Journal of Shahrekord University of Medical Sciences, 17(4), 80-87.
[18] Abu-Shanab, B., ADWAN, G. M., Jarrar, N., Abu-Hijleh, A., & Adwan, K. (2006). Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus. Turkish Journal of Biology, 30(4), 195-198.
[19] Sipahi, N., Kekeç, A. I., & Halaç, B. (2022). In Vitro Effect of Some Essential Oils against Multiple Antibiotic-Resistant Bacteria from Cats and Dogs. Pakistan Veterinary Journal, 42(4), 561-565.
[20] Shariati, A., Dadashi, M., Moghadam, M. T., van Belkum, A., Yaslianifard, S., & Darban-Sarokhalil, D. (2020). Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Scientific reports, 10(1), 1-16.
[21] Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction technologies for medicinal and aromatic plants, 1(1), 21-40.
[22] Phuyal, N., Jha, P. K., Raturi, P. P., Gurung, S., & Rajbhandary, S. (2019). Essential oil composition of Zanthoxylum armatum leaves as a function of growing conditions. International Journal of Food Properties, 22(1), 1873-1885.
[23] Dadgar,. T., Ghaemi, E, Bazueri, M., Asmar, M., Mazandarani, M., Saifi, A., Bayat, H. (2008). The antibacterial effects of 20 herbal plants on methicillin resistant and sensitives S.aureus in Golestan provience. Journal of Gorgan University of Medical Sciences, 9(1), 55-62.
[24] Qureshi, K. A., Imtiaz, M., Parvez, A., Rai, P. K., Jaremko, M., Emwas, A. H., ... & Fatmi, M. Q. (2022). In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2, 5-diene-1, 4-dione) against selected human pathogens. Antibiotics, 11(1), 79.
[25] Hassanshahiyan, M., Saadatfar, A., & Masoumi, F. (2018). Antimicrobial properties of Hyssopus officinalis extract against antibiotic-resistant bacteria in planktonic and biofilm form. Biological Journal of Microorganism, 7(28), 91-101.
[26] Yaghoobi, M. M., Khaleghi, M., Rezanejad, H., & Parsia, P. (2018). Antibiofilm activity of Dracocephalum polychaetum extract on methicillin-resistant Staphylococcus aureus. Avicenna Journal of Clinical Microbiology and Infection, 5(1), 61772-61772.
[27] Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
[28] Ndombera. F., Maiyoh. G., Tuei. V. (. 2019). Pharmacokinetic, physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. Journal of Pharmacy and Pharmacology, 7,165-176.
[29] Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25.
[30] Li, X., Du, Z., Wang, J., Wu, Z., Li, W., Liu, G., ... & Tang, Y. (2015). In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Molecular informatics, 34(4), 228-235.
[31] Simpson, E. R., Clyne, C., Rubin, G., Boon, W. C., Robertson, K., Britt, K., ... & Jones, M. (2002). Aromatase—a brief overview. Annual review of physiology, 64(1), 93-127.
[32] Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., & Sharma, S. (2011). The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of advanced pharmaceutical technology & research, 2(4), 236.
[33] Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T. (2014). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. Journal of Infection and Chemotherapy, 20(10), 593-601.
[34] Rao, V. S., & Srinivas, K. (2011). Modern drug discovery process: An in silico approach. Journal of bioinformatics and sequence analysis, 2(5), 89-94.
[35] French, G. L. (2006). Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, 58(6), 1107-1117.
[36] Salamaga, B., Kong, L., Pasquina-Lemonche, L., Lafage, L., von und zur Muhlen, M., Gibson, J. F., ... & Foster, S. J. (2021). Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. Proceedings of the National Academy of Sciences, 118(44), e2106022118.
[37] Ahmed, E. A., Abu Zahra, H., Ammar, R. B., Mohamed, M. E., & Ibrahim, H. I. M. (2022). Beta-Caryophyllene Enhances the Anti-Tumor Activity of Cisplatin in Lung Cancer Cell Lines through Regulating Cell Cycle and Apoptosis Signaling Molecules. Molecules, 27(23), 8354.
[38] Francomano, F., Caruso, A., Barbarossa, A., Fazio, A., La Torre, C., Ceramella, J., ... & Sinicropi, M. S. (2019). β-Caryophyllene: a sesquiterpene with countless biological properties. Applied Sciences, 9(24), 5420.
[39] Stevens, N., & Allred, K. (2022). Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations. Molecules, 27(3), 853.
[40] Yoo, H. J., & Jwa, S. K. (2018). Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Archives of oral biology, 88, 42-46.
[41] Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R. P., Bes, M., ... & Lina, G. (2002). High genetic variability of the agr locus in Staphylococcus species. Journal of Bacteriology. 2002 Feb; 184(4): 1180–1186.