خصوصیات ضدمیکروبی، ضد بیوفیلمی و فارماکوکینتیکی برخی از اسانس های خانواده نعناعیان علیه استافیلوکوکوس اورئوس مقاوم به متی سیلین و ونکومایسین

نویسندگان
1 دانشجوی کارشناسی ارشد رشته ژنتیک، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبدکاووس، گنبدکاووس، ایران
2 استادیار میکروبیولوژی، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبدکاووس، گنبدکاووس، ایران
3 استادیار گیاهان داروئی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان سمنان (شاهرود)، ایران
4 استادیار ژنتیک، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبدکاووس، گنبدکاووس، ایران
چکیده
چکیده:

وجود استافیلوکوکوس اورئوس مقاوم به متی­سیلین (MRSA) و ونکومایسین (VRSA) در مواد غذایی، یک نگرانی جدی برای سلامت عمومی ایجاد کرده است. هدف از این مطالعه، بررسی فعالیت ضدمیکروبی و ضدبیوفیلمی برخی از اسانس‌های خانواده نعناعیان شامل بادرنجبویه، مریم گلی و نعنا فلفلی، بر سویه‌های MRSA و برای اولین بار بر VRSA است. بدین منظور، تست­های دیسک دیفیوژن، تست حداقل غلظت مهاری رشد (MIC)، حداقل غلظت باکتریسیدالی (MBC)، حداقل غلظت مهار تشکیل بیوفیلم (MBIC) و حداقل غلظت موردنیاز برای مهار باکتری‌های موجود در بیوفیلم (MBEC) تعیین شد. سپس ترکیبات مؤثره اسانس­ بادرنجبویه علیه پروتئین­های PBP2a، agrA و Bap با استفاده از اتوداک وینا موردبررسی قرار گرفت و درنهایت، خصوصیات فارماکوکینتیک آن­ها با استفاده از سرورهای ADMETsar و SwissADME بررسی شد. بر اساس نتایج به‌دست‌آمده، میزان MIC و MBC اسانس بادرنجبویه بر روی سویه MRSA به ترتیب برابر با 05/0 و 112/0 میلی‌گرم/میلی‌لیتر و بر روی سویه VRSA به ترتیب برابر با 8/1 و 5/2میلی‌گرم/میلی‌لیتر به دست آمد. میزان MBIC و MBEC اسانس بادرنجبویه در سویه MRSA به ترتیب برابر با 03/0میلی‌گرم/میلی‌لیتر و 112/0میلی‌گرم/میلی‌لیتر و در سویه VRSA به ترتیب برابر با 9/0میلی‌گرم/میلی‌لیتر و 2/3 میلی‌گرم/میلی‌لیتر شد. نتایج داکینگ مولکولی نشان داد که ترکیب بتاکاریوفیلن چه در جایگاه فعال و چه در جایگاه آلوستریک پروتئین PBP2a انرژی اتصالی بالاتری از بقیه ترکیبات موردبررسی نشان می‌دهد (6/6- کیلوکالری بر مول). از طرفی، ترکیبات مؤثره این اسانس، مخصوصاً سیترونلال، تیمول و سیترال ازنظر خصوصیات فارماکوکینتیک قابل‌قبول بودند. از آنجایی که آنتی‌بیوتیک‌های طبیعی می‌توانند جایگزین مناسبی برای آنتی‌بیوتیک‌های معمولی در درمان بیماری‌های ناشی از موادغذایی استافیلوکوکوس اورئوس باشند، نتایج این مطالعه نشان داد که اسانس بادرنجبویه بر رشد و بیوفیلم سویه‌های MRSA و VRSA مؤثر است و می تواند به عنوان یک کاندید داروئی در پیشگیری و درمان عفونت­های ناشی از سویه­های دارای مقاومت آنتی­بیوتیکی این باکتری مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Antibacterial, antibiofilm, and pharmacokinetic properties of some Lamiaceae essential oils against methicillin- and vancomycin-resistant staphylococcus aureus

نویسندگان English

Mohammad Valian 1
Matia Sadat Borhani 2
Esmail Babakhanzadeh Sajirani 3
Eisa Jorjani 4
Sohrab Boozarpour 4
1 MSc student of Genetics, Biology Department, Faculty of Sciences, Gonbad Kavous University, Golestan, Iran.of Genetics, Biology Department, Faculty of Sciences, Gonbad Kavous University, Golestan, Iran.
2 Assistant professor of Microbiology, Biology Department, Faculty of Sciences, Gonbad Kavous University, Golestan, Iran
3 Assistant Professor of Medicinal Plants, Agricultural and Natural Resources Research and Education Center of Semnan Province (Shahrood), AREEO, Shahrood, Iran
4 Assistant professor of Genetics, Biology Department, Faculty of Sciences, Gonbad Kavous University, Golestan, Iran.
چکیده English

The presence of methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) Staphylococcus aureus in food raises a public health concern. This study aimed to investigate the antibacterial and anti-biofilm activity of some Lamiaceae essential oils including Melissa Officinalis, Salvia officinalis, and Mentha piperita against MRSA and for the first time on VRSA strains. For this purpose, the disk diffusion test, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) were determined. Then, M. Officinalis essential oil compounds were investigated against PBP2a, agrA, and Bap proteins using AutoDocK Vina. Finally, pharmacokinetic properties were investigated using ADMETsar and SwissADME servers. Based on the obtained results, the MIC and MBC values of M. Officinalis essential oil against MRSA strain were equal to 0.05 and 0.112 mg/ml, and against VRSA strain were equal to 1.8 and 2.5 mg/ml, respectively. The MBIC and MBEC of M. Officinalis essential oil against MRSA strain were equal to 0.03 mg/ml and 0.112 mg/ml, and against VRSA strain were equal to 0.9 mg/ml and 3.2 mg/ml, respectively. The results of molecular docking showed that β-Caryophyllene had a greater binding affinity to PBP2a protein either in the active site or in the allosteric site (-6.6kcal/mol). On the other hand, the effective compounds of this essential oil, especially citronellol, thymol, and citral, were acceptable in terms of pharmacokinetic properties. Since natural antibiotics can be an alternative to conventional antibiotics in the treatment of Staphylococcus aureus food-borne diseases, the results of this study showed that Melissa Officinalis essential oil is effective on the growth and biofilm of MRSA and VRSA strains, and it can be used as a drug candidate in the prevention and treatment of infections caused by antibiotic-resistant strains of this bacterium.

کلیدواژه‌ها English

Staphylococcus aureus
Melissa Officinalis
Biofilm
molecular docking
Antibiotic resistance
[1] Mohamadi, S., Rezaee, R., Hashemi, M., Kiani, B., Ghasemi, S., Alizadeh Sani, M., & Afshari, A. (2023). Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Staphylococcus aureus (VRSA), and Vancomycin-Resistant Enterococci (VRE) contamination of food samples in Iran: A systematic review and meta-analysis. Iranian Journal of Medical Microbiology, 17(2), 2-2.
[2] Mahasenan, K. V., Molina, R., Bouley, R., Batuecas, M. T., Fisher, J. F., Hermoso, J. A., ... & Mobashery, S. (2017). Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. Journal of the American Chemical Society, 139(5), 2102-2110.
[3] Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB life, 66(8), 572-577.
[4] Périchon, B., & Courvalin, P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy, 53(11), 4580-4587.
[5] Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), e00026-19.
[6] David MZ, Daum RS. Treatment of Staphylococcus aureus infections. Staphylococcus aureus: microbiology, pathology, immunology, therapy and prophylaxis. 2017:325-83.
[7] Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature reviews Drug discovery, 2(2), 114-122.
[8] Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14), 7602.
[9] Saipriya, K., Swathi, C. H., Ratnakar, K. S., & Sritharan, V. (2020). Quorum‐sensing system in Acinetobacter baumannii: a potential target for new drug development. Journal of applied microbiology, 128(1), 15-27.
[10] Ta, C. A. K., & Arnason, J. T. (2015). Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules, 21(1), 29.
[11] Moradi, F., & Hadi, N. (2021). Quorum-quenching activity of some Iranian medicinal plants. New Microbes and New Infections, 42, 100882.
[12] Bouyahya, A., Chamkhi, I., Balahbib, A., Rebezov, M., Shariati, M. A., Wilairatana, P., ... & El Omari, N. (2022). Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: a comprehensive review. Molecules, 27(5), 1484.
[13] Ehsani, A., Alizadeh. O., Hashemi, M., Afshari, A., Aminzare, M. (2017). Phytochemical, antioxidant and antibacterial properties of Melissa officinalis and Dracocephalum moldavica essential oils. Veterinary Research Forum, 8 (3), 223-229.
[14] Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., ... & Tang, Y. (2019). ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148-157.
[15] Ahmadi, E., Abdollahi, A., Najafipour, S., Meshkibaf, M. H., Fasihi Ramandi, M., Namdar, N., ... & Allahverdi, G. (2016). Surveying the effect of the phenol compounds on antibacterial activity of herbal extracts: in vitro assessment of herbal extracts in Fasa-Fars province. Journal of Fasa University of Medical Sciences, 6(2), 210-220.
[16] Arzhang, M., Dakhili, M., & Farahani, F. (2015). Investigation of Chemical Compounds and Anti-microbial Activity of Essential Oil of Melissa officinalis L. Qom University of Medical Sciences Journal, 9(1), 7-13.
[17] Alizade, O., Ehsani, A., Hashemi, M., Mohamadi, S., & Khalili, S. (2015). Comparative antibacterial effects of essential oils of Melissa officinalis and Deracocephalum moldavica L. against some pathogenic bacteria in food in vitro. Journal of Shahrekord University of Medical Sciences, 17(4), 80-87.
[18] Abu-Shanab, B., ADWAN, G. M., Jarrar, N., Abu-Hijleh, A., & Adwan, K. (2006). Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus. Turkish Journal of Biology, 30(4), 195-198.
[19] Sipahi, N., Kekeç, A. I., & Halaç, B. (2022). In Vitro Effect of Some Essential Oils against Multiple Antibiotic-Resistant Bacteria from Cats and Dogs. Pakistan Veterinary Journal, 42(4), 561-565.
[20] Shariati, A., Dadashi, M., Moghadam, M. T., van Belkum, A., Yaslianifard, S., & Darban-Sarokhalil, D. (2020). Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Scientific reports, 10(1), 1-16.
[21] Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction technologies for medicinal and aromatic plants, 1(1), 21-40.
[22] Phuyal, N., Jha, P. K., Raturi, P. P., Gurung, S., & Rajbhandary, S. (2019). Essential oil composition of Zanthoxylum armatum leaves as a function of growing conditions. International Journal of Food Properties, 22(1), 1873-1885.
[23] Dadgar,. T., Ghaemi, E, Bazueri, M., Asmar, M., Mazandarani, M., Saifi, A., Bayat, H. (2008). The antibacterial effects of 20 herbal plants on methicillin resistant and sensitives S.aureus in Golestan provience. Journal of Gorgan University of Medical Sciences, 9(1), 55-62.
[24] Qureshi, K. A., Imtiaz, M., Parvez, A., Rai, P. K., Jaremko, M., Emwas, A. H., ... & Fatmi, M. Q. (2022). In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2, 5-diene-1, 4-dione) against selected human pathogens. Antibiotics, 11(1), 79.
[25] Hassanshahiyan, M., Saadatfar, A., & Masoumi, F. (2018). Antimicrobial properties of Hyssopus officinalis extract against antibiotic-resistant bacteria in planktonic and biofilm form. Biological Journal of Microorganism, 7(28), 91-101.
[26] Yaghoobi, M. M., Khaleghi, M., Rezanejad, H., & Parsia, P. (2018). Antibiofilm activity of Dracocephalum polychaetum extract on methicillin-resistant Staphylococcus aureus. Avicenna Journal of Clinical Microbiology and Infection, 5(1), 61772-61772.
[27] Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
[28] Ndombera. F., Maiyoh. G., Tuei. V. (. 2019). Pharmacokinetic, physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. Journal of Pharmacy and Pharmacology, 7,165-176.
[29] Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25.
[30] Li, X., Du, Z., Wang, J., Wu, Z., Li, W., Liu, G., ... & Tang, Y. (2015). In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Molecular informatics, 34(4), 228-235.
[31] Simpson, E. R., Clyne, C., Rubin, G., Boon, W. C., Robertson, K., Britt, K., ... & Jones, M. (2002). Aromatase—a brief overview. Annual review of physiology, 64(1), 93-127.
[32] Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., & Sharma, S. (2011). The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. Journal of advanced pharmaceutical technology & research, 2(4), 236.
[33] Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T. (2014). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. Journal of Infection and Chemotherapy, 20(10), 593-601.
[34] Rao, V. S., & Srinivas, K. (2011). Modern drug discovery process: An in silico approach. Journal of bioinformatics and sequence analysis, 2(5), 89-94.
[35] French, G. L. (2006). Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, 58(6), 1107-1117.
[36] Salamaga, B., Kong, L., Pasquina-Lemonche, L., Lafage, L., von und zur Muhlen, M., Gibson, J. F., ... & Foster, S. J. (2021). Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics. Proceedings of the National Academy of Sciences, 118(44), e2106022118.
[37] Ahmed, E. A., Abu Zahra, H., Ammar, R. B., Mohamed, M. E., & Ibrahim, H. I. M. (2022). Beta-Caryophyllene Enhances the Anti-Tumor Activity of Cisplatin in Lung Cancer Cell Lines through Regulating Cell Cycle and Apoptosis Signaling Molecules. Molecules, 27(23), 8354.
[38] Francomano, F., Caruso, A., Barbarossa, A., Fazio, A., La Torre, C., Ceramella, J., ... & Sinicropi, M. S. (2019). β-Caryophyllene: a sesquiterpene with countless biological properties. Applied Sciences, 9(24), 5420.
[39] Stevens, N., & Allred, K. (2022). Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations. Molecules, 27(3), 853.
[40] Yoo, H. J., & Jwa, S. K. (2018). Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm. Archives of oral biology, 88, 42-46.
[41] Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R. P., Bes, M., ... & Lina, G. (2002). High genetic variability of the agr locus in Staphylococcus species. Journal of Bacteriology. 2002 Feb; 184(4): 1180–1186.